• Title/Summary/Keyword: crack prediction

Search Result 557, Processing Time 0.029 seconds

The Notched Strength and Fracture Criterion in Plain Woven Glass/Epoxy Composites With a Crack (노치부를 가진 Glass/Epoxy 복합재료의 노치강도 평가와 불안정 파괴조건)

  • 김정규;김도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.57-67
    • /
    • 1993
  • The fracture behavior of plain woven glass/epoxy composite plates with a crack is investigated under static tensile loading. It is shown in this paper that the characteristic length associated with the point stress criterion depends on the crack length. To predict the not ched tensile strength, the point stress criterion proposed by Whitney and Nuismer are modified. An excellent agreement is found between the experimental results and the analytical prediction of the modified point stress criterion. The condition of unstable crack growth in the presence of a per-existing flaw(machined notch) is examined by means of the maximum stress intensity factor $K_max$ using maximumload P$_max$. The values of $K_max$ evaluated from energy release rate G$_max$(the compliance me thod) indicate a wide difference. Therefore in regard to anisotropy and heterogeneity of the composite materials studied, the modified shape correction factor f(a/W) is obtained. $K_max$evaluated by the compliance method a little or insignificantly depends on the initial crack length a, the specimen thickness B, the crack angle .theta. and the specimen geometry.

  • PDF

C* Based Life Assessment of 3D Crack at High Temperature (C*에 기초한 3차원 고온균열 수명평가)

  • Han, Tae-Soo;Yoon, Kee-Bong;Lee, Hyung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.823-833
    • /
    • 2001
  • In recent years, the subject of remaining life assessment has drawn considerable attention in chemical plants, where various structural components typically operate at high temperature an pressure. Thus a life prediction methodology accounting for high temperature creep fracture is increasingly needed for the components. Critical defects in such structures are generally found in the form of semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. On this background, we first develop an auto mesh generation program for detailed 3-D finite element analyses of axial and circumferential semi-elliptical surface cracks in a piping system. A high temperature creep fracture parameter C-integral is obtained from the finite element analyses of generated 3-D models. Post crack growth module is further appended here to calculate the amount of crack growth. Finally the remaining lives of surface cracked pipes for various analytical parameters are assessed using the developed life assessment program.

Statistical Analysis of Fatigue Crack Growth Properties for Silicon Carbide Particles Reinforced Metal Matrix Composites ($SiCp/A\ell$ 6061 복합재료의 피로균열진전특성에 관한 통계학적 해석)

  • 권재도;문윤배;안정주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.130-139
    • /
    • 1996
  • The silicon carbide particles reinforced aluminium 6061($SiCp/A\ell$) composites are generally known have wild range of applications from automobiles to airospaces. But, by the results of existing study for $SiCp/A\ell$ composites, there are reports that the fatigue life of $SiCp/A\ell$ composites has improved than $A\ell$matrixes and has not improved then $A\ell$ matrixes. Consequently, in order to perform the reliable life prediction for $SiCp/A\ell$, the properties of probability distribution of fatigue crack initiation life & fracture life, crack growth length in constant number of cycles, crack growth rate in constant stress intensity factor range and m & C value in Paris's fatigue crack growth law and the estimation of statistical parameters have been evaluated by the statistics method.

  • PDF

A Study on High Temperature Crack Growth Behavior in 2.25Cr-lMo Steel Weldments at $550^{\circ}C$ ($550^{\circ}C$에서의 2.25Cr-1Mo 강 용접부의 고온 균열성장 거동에 관한 연구)

  • Kim, Ho-Kyung;Chung, Kang;Chung, Chin-Sung
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.278-284
    • /
    • 2001
  • Both creep deformation and creep crack growth experiments have been conducted on 2.25Cr-1Mo steel weldment in order to provided an information on residual life prediction of structural component weldment containing a crack. The stress exponent of creep deformation equation for the base metal and weldment at 823k were found to be 10.2 and 7.3, respectively. These two values could be assumed that dislocation climb processes are controlling the creep deformation of both materials. The creep rate of the weldment was very low, compared with that of base metal under the same applied stress. Whereas the creep crack growth rate of the weldment was almost twice higher than that of base metal under the fixed value of $C^*$. This may indicate that the weldment is stronger than the base metal in view of creep deformation and is brittle during creep crack growth due to the intrinsic microstructure of banite and relatively higher and Mn contents.

  • PDF

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.

Uniaxial Tension Behavior According to the Distribution of Fiber Orientation (섬유 분포에 따른 ECC 1축 인장 거동)

  • Lee, Bang-Yeon;Kim, Yun-Yong;Kim, Jin-Keun;Nam, Kwan-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.531-532
    • /
    • 2009
  • This paper presents crack spacing which quantitatively considers the fiber distribution and prediction of uniaxial tensile behavior of ECC on the basis of crack spacing and fiber distribution. The predictions exhibit similar tensile stess-strain curves to the test results within 10% error.

  • PDF

Stress Modeling for Cyclic Fatigue Life Prediction of Alumina Ceramics (알루미나 세라믹스의 반복 피로 수명 예측을 위한 응력 모델)

  • 이홍림;박성은;한봉석
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1141-1146
    • /
    • 1994
  • Cyclic fatigue experiment was carried out to predict the life time of alumina ceramics. Four kinds of model were suggested to obtain the adequate representative static stress corresponding to the cyclic stress applied to the alumina specimens. Arithmetic mean stress model gives 21.81 of the crack growth exponent, integrated stress model gives 22.15, maximum stress model gives 24.57, and equivalent static stress model gives 24.43. It is considered that the equivalent static stress model is the most reasonable and gives the best adequate crack growth exponents value.

  • PDF

Ductile Fracture in the Central Region of Circular Plate in Rotary Forging

  • Park, Seogou;Oh, Hung-Kuk
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.337-342
    • /
    • 1996
  • The present investigation is concerned with application of theory on fracture to the prediction of workability of materials in rotary forging with special reference to center crack. The validity of the theory on ductile fracture was examined by the experimental data. Then the workability of materials in rotary forging was determined.

  • PDF

Fatigue Life Predictions for Variable Load Histories - Part II : Computer Software for Predictions of Fatigue Crack Initiation Life - (變動荷重下의 疲勞壽命 豫測 第2報)

  • 이시중;송지호;하재선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1350-1357
    • /
    • 1988
  • A computer software was developed for predictions of fatigue crack initiation life of notched members under variable loadings. The software was constructed based on a new fatigue life prediction method utilizing modified .epsilon.-N curves, which can account for the stress interaction effect. The effect of mean plastic strain on low-cycle fatigue life was also incorporated in the software. The software can be utilized for the first step approximation when fundamental data of material fatigue properties are not available.

A Program Development of Life Prediction Simulation for Multi-Surface Cracks on the Finite Plate (무한 평면체에 존재하는 복수 표면균열의 성장에 대한 수명예측용 시뮬레이션 개발에 관한 연구)

  • 황남성;서창민;남승훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.61-75
    • /
    • 1997
  • The social demand urges us to use some equipments and structures in high temperature environment. By this occasion, the necessity of studying the fatigue crack growth is an important aspect of new materials. However, the present situation is rarely to accumulate the fatigue data. Especially, 1Cr-1Mo-0.25V steel and 304 stainless steel have been increased to be used under the severe condition of high temperature. And so, the fatigue estimation of those materials is important and appropriate. Fatigue tests have been carried out to examine the crack initiation, growth behaviour for the small fatigue crack of 1Cr-1Mo-0.25V steel and 304 stainless steel at room temperature and 538^{\circ}C$. The remote measurement system which has many merits of checking and saving the image for detailed examination was applied to closely detect the crack length. Generally, the fatigue crack initiated in the form of multiple cracks and grew each other. And then it coalesced to become a major crack. The major crack governed the rest of the fatigue life. In the growing process, each peripheral cracks interact and grow for a certain period. After then, it coalesced and fractured. On the basis of the above experimental data for the small crack, a simulation program was developed to predict the residual life time and to estimate the integrity of machine elements and structures. At the same time, the simulation was extended to 1Cr-1Mo-0.25V steel. The simulation results have shown a good agreement to those of the experimental ones for both materials of 1Cr-1Mo-0.25V steel and 304 stainless steel with small cracks. The NASCRAC has applied to compare the fatigue life with the experimental results. And so, it can be said that the simulation program is valuable tools to the industrial fields.

  • PDF