• Title/Summary/Keyword: crack patterns

Search Result 307, Processing Time 0.266 seconds

Experimental Study on the Surface Defects of Scribed Glass Sheets (절단 유리판의 표면결함에 관한 실험적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.332-337
    • /
    • 2008
  • This paper presents the surface defect analysis based on the experimental investigation of scribed glasses. The scribing process by a diamond wheel cutter is widely used as a reliable and inexpensive method for sizing of glass sheets. The wheel cutter generates a small median crack on the glass surface, which is then propagated through the glass thickness for complete separation. The surface contour patterns in which are formed during a scribing process are strongly related to wheel cutter parameters such as wheel tip surface finish, tip angle and wheel diameter, and cutting process parameters such as scribing pressure, speed and tooling technique. The scribed surface of a glass sheet provides normal Wallner lines, which represent regular median cracks and crack propagation in glass thickness, and abnormal surface roughness patterns. In this experimental study, normal and abnormal surface topographic patterns are classified based on the surface defect profiles of scribed glass sheets. A normal surface of a scribed glass sheet shows regular Wallner lines with deep median cracks. But some specimens of scribed glass sheets show that abnormal surface profiles of glass sheets in two pieces are represented by a chipping, irregular surface cracks in depth, edge cracks, and combined crack defects. These surface crack patterns are strongly related to easy breakage of the scribed glass imposed by external forces. Thus the scribed glass with abnormal crack patterns should be removed during a quality control process based on the surface defect classification method as demonstrated in this study.

L-System Based Procedural Synthesis Method to Efficiently Generate Dense, Radial, and Concentric Cracks of Glass (유리의 미세, 방사상, 동심원 균열을 효율적으로 생성하기 위한 L-System 기반의 절차적 합성 방법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • We propose a complex crack generation technique which is represented when impact is applied to glass. The crack patterns expressed when external forces are applied to the glass are classified into dense, radial, and concentric cracks, and we use procedural methods to efficiently represent crack patterns. Based on the input external force, we synthesize the crack example and apply the L-system based on this example to model the propagation shape of the crack in real time. Although physics based crack generation can analyze and model accurate cracks, it has a disadvantage of slow computation because of its high computational cost, and procedural methods have a relatively fast rate of continuity, but are not sufficient to capture accurate crack characteristics. We modeled cracks in glass using L-system to achieve both of these advantages. As a result, it realistically represented the microscopic crack patterns of glass in real time.

The modeling of electrical characteristics with crack pattern in crystalline solar cell (결정질 태양전지 crack 패턴에 따른 전기적 특성 모델링)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.239-244
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with crack pattern in crystalline solar cell. crystalline solar cells with a thin substrate, even small shocks can be easily damaged. Before the module goes through many processes, because the solar cells are at risk of a crack. That occurred early in the PV module micro-crack is not easily detection by eye test or output test. Because the EL (Electroluminescence) device has been detected using. PV module is made by laminated of a variety of materials. By different properties of each material will affect the crack. For this reason, the crack will grow and affect the output. And We analyzed the three crack patterns in crystalline solar cell. A growth of cracks on crystalline solar cell was interpreted by analysing generated cracks on the PV modules. Based on this interpretation, an electrical output value was calculated by mathematical modeling on electrical output characteristic with each crack patterns.

  • PDF

A Study on the Bimaterial Constant of Two Dissimillar Isotropic Bimaterial Under Static and Dynamic Load (정적 및 동적 하중을 받는 두 상이한 등방성 이종재료의 이종재료상수에 대한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1776-1785
    • /
    • 2004
  • In this research, the relationships between static bimaterial constant and dynamic oscillation index are studied. It was certified that static bimaterial constant has the same form equation as the dynamic oscillation index. Bimaterial constant and oscillation index are increased with the increment of Young's modulus ratio and approached to the some value. Isochromatic fringe patterns are slanted to the left side with increment of bimaterial constants and oscillation index. Though patterns of stress components in above the crack surface are similar to each other, their magnitudes are different a little. In the ahead of crack tip, there are big differences in the isochromatic fringe patterns and their magnitudes. The influence of bimaterial with Young's modulus ratio is bigger in the propagation crack than in the stationary crack.

Comparison of Full-Field Stresses around an Inclined Crack Tip by Using Fringe Data of Finite Element Method with Photoelastic Experiment

  • Baek, Tae-Hyun;Kim, Myung-Soo;Chen, Lei
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.557-562
    • /
    • 2009
  • Abrupt change of cross-section in mechanical parts is one of significant causes of structural fracture. In this paper, a hybrid method is employed to analyze the stress distribution of a discontinuous plate. The plate with an inclined crack is utilized in our experiment and the stress field in the vicinity of crack tip is calculated through isochromatic fringe order of given points. This calculation can be made handy through least-squares method integrated with complex power series representation(Laurent series) implemented on a computer program for high-speed processing. In order to accurately compare calculated results with experimental ones, both of actual and regenerated photoelastic fringe patterns are doubled and sharpened by digital image processing. The experiment results show that regenerated patterns obtained by hybrid method are quite comparable to actual patterns.

Crack propagation simulation of concrete with the regular triangular lattice model

  • Jo, Byung-Wan;Tae, Ghi-Ho;Schlangen, Erik;Kim, Chang-Hyun
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.165-176
    • /
    • 2005
  • This paper discusses 2D lattice models of beams for simulating the fracture of brittle materials. A simulation of an experiment on a concrete beam subjected to bending, in which two overlapping cracks occur, is used to study the effect of individual beam characteristics and different arrangements of the beams in the overall lattice. It was found that any regular orientation of the beams influences the resulting crack patterns. Methods to implement a wide range of Poisson's ratios are also developed, and the use of the lattice to study arbitrary micro-structures is outlined. The crack patterns that are obtained with lattice are in good agreement with the experimental results. Also, numerical simulations of the tests were performed by means of a lattice model, and non-integer dimensions were measured on the predicted lattice damage patterns.

Repair and Retrofit of Fatigue crack for Curved Girder Bridge (곡선 강교량 피로균열 보수.보강방안)

  • Park, Jin-Eun;Kyung, Kab-Soo;Kwon, Soon-Cheol;Lee, Hee-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.50-55
    • /
    • 2008
  • In order to investigate and estimate the cause of fatigue crack occurred to curved girder bridge that is used during 20 years, in this study, filed tests to obtain the characteristic of stress hysteresis were performed under the real traffic flows. From these test results, we analyzed the cause of fatigue crack for various fatigue crack patterns. Also, the characteristic of structural behavior for the curved girder bridge were examined from the FE analysis. In addition, to retrofit various fatigue cracks occurred in the bridge, FE analyses considering the characteristics of crack patterns were performed and retrofitting methods were suggested.

  • PDF

A Study on the Electrical Characteristics of Photovoltaic Module Depending on Micro-Crack Patterns of Crystalline Silicon Solar Cell (결정질 태양전지의 Micro-crack 패턴에 따른 PV모듈의 전기적 특성에 관한 연구)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.407-412
    • /
    • 2012
  • This study investigated the process of thermal-induced growth of micro-crack developed at the crystalline solar cell using EL image, determined the output characteristic according to the pattern of micro-crack, analyzed the I-V characteristic according to the pattern of crack growth, and predicted the output value using simulation. The purpose of this study was, therefore, to investigate the process of thermal-induced growth of micro-crack developed at the early stage of PV module completion using EL image, to analyze the resulting decrement of output and predict the output value using simulation. It was observed that the crack grew increasingly by the thermal condition, and accordingly the lowering of output was accelerated. The output values of crack patterns with various direction were predicted using simulation, resulting in close I-V curve with only around 4% of error rate. It is considered that it is possible to predict the electric characteristic of solar cell module using only pattern of micro-crack occurred at solar cell based on our results.

On modeling coupling beams incorporating strain-hardening cement-based composites

  • Hung, Chung-Chan;Su, Yen-Fang
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.565-583
    • /
    • 2013
  • Existing numerical models for strain-hardening cement-based composites (SHCC) are short of providing sufficiently accurate solutions to the failure patterns of coupling beams of different designs. The objective of this study is to develop an effective model that is capable of simulating the nonlinear behavior of SHCC coupling beams subjected to cyclic loading. The beam model proposed in this study is a macro-scale plane stress model. The effects of cracks on the macro-scale behavior of SHCC coupling beams are smeared in an anisotropic model. In particular, the influence of the defined crack orientations on the simulation accuracy is explored. Extensive experimental data from coupling beams with different failure patterns are employed to evaluate the validity of the proposed SHCC coupling beam models. The results show that the use of the suggested shear stiffness retention factor for damaged SHCC coupling beams is able to effectively enhance the simulation accuracy, especially for shear-critical SHCC coupling beams. In addition, the definition of crack orientation for damaged coupling beams is found to be a critical factor influencing the simulation accuracy.

Crack analysis of reinforced concrete members with and without crack queuing algorithm

  • Ng, P.L.;Ma, F.J.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Due to various numerical problems, crack analysis of reinforced concrete members using the finite element method is confronting with substantial difficulties, rendering the prediction of crack patterns and crack widths a formidable task. The root cause is that the conventional analysis methods are not capable of tracking the crack sequence and accounting for the stress relief and re-distribution during cracking. To address this deficiency, the crack queuing algorithm has been proposed. Basically, at each load increment, iterations are carried out and within each iteration step, only the most critical concrete element is allowed to crack and the stress re-distribution is captured in subsequent iteration by re-formulating the cracked concrete element and re-analysing the whole concrete structure. To demonstrate the effectiveness of the crack queuing algorithm, crack analysis of concrete members tested in the literature is performed with and without the crack queuing algorithm incorporated.