• Title/Summary/Keyword: crack network

Search Result 160, Processing Time 0.025 seconds

Smartphone-based structural crack detection using pruned fully convolutional networks and edge computing

  • Ye, X.W.;Li, Z.X.;Jin, T.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.141-151
    • /
    • 2022
  • In recent years, the industry and research communities have focused on developing autonomous crack inspection approaches, which mainly include image acquisition and crack detection. In these approaches, mobile devices such as cameras, drones or smartphones are utilized as sensing platforms to acquire structural images, and the deep learning (DL)-based methods are being developed as important crack detection approaches. However, the process of image acquisition and collection is time-consuming, which delays the inspection. Also, the present mobile devices such as smartphones can be not only a sensing platform but also a computing platform that can be embedded with deep neural networks (DNNs) to conduct on-site crack detection. Due to the limited computing resources of mobile devices, the size of the DNNs should be reduced to improve the computational efficiency. In this study, an architecture called pruned crack recognition network (PCR-Net) was developed for the detection of structural cracks. A dataset containing 11000 images was established based on the raw images from bridge inspections. A pruning method was introduced to reduce the size of the base architecture for the optimization of the model size. Comparative studies were conducted with image processing techniques (IPTs) and other DNNs for the evaluation of the performance of the proposed PCR-Net. Furthermore, a modularly designed framework that integrated the PCR-Net was developed to realize a DL-based crack detection application for smartphones. Finally, on-site crack detection experiments were carried out to validate the performance of the developed system of smartphone-based detection of structural cracks.

Pixel-based crack image segmentation in steel structures using atrous separable convolution neural network

  • Ta, Quoc-Bao;Pham, Quang-Quang;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.3
    • /
    • pp.289-303
    • /
    • 2022
  • In this study, the impact of assigned pixel labels on the accuracy of crack image identification of steel structures is examined by using an atrous separable convolution neural network (ASCNN). Firstly, images containing fatigue cracks collected from steel structures are classified into four datasets by assigning different pixel labels based on image features. Secondly, the DeepLab v3+ algorithm is used to determine optimal parameters of the ASCNN model by maximizing the average mean-intersection-over-union (mIoU) metric of the datasets. Thirdly, the ASCNN model is trained for various image sizes and hyper-parameters, such as the learning rule, learning rate, and epoch. The optimal parameters of the ASCNN model are determined based on the average mIoU metric. Finally, the trained ASCNN model is evaluated by using 10% untrained images. The result shows that the ASCNN model can segment cracks and other objects in the captured images with an average mIoU of 0.716.

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.501-511
    • /
    • 2022
  • In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.

Detection of Delamination Crack for Polymer Matrix Composites with Carbon Fiber by Electric Potential Method

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.149-153
    • /
    • 2013
  • Delamination crack detection is very important for improving the structural reliability of laminated composite structures. This requires real-time delamination detection technologies. For composite laminates that are reinforced with carbon fiber, an electrical potential method uses carbon fiber for reinforcements and sensors at the same time. The use of carbon fiber for sensors does not need to consider the strength reduction of smart structures induced by imbedding sensors into the structures. With carbon fiber reinforced (CF/) epoxy matrix composites, it had been proved that the delamination crack was detected experimentally. In the present study, therefore, similar experiments were conducted to prove the applicability of the method for delamination crack detection of CF/polyetherethereketone matrix composite laminates. Mode I and mode II delamination tests with artificial cracks were conducted, and three point bending tests without artificial cracks were conducted. This study experimentally proves the applicability of the method for detection of delamination cracks. CF/polyetherethereketone material has strong electric resistance anisotropy. For CF/polyetherethereketone matrix composites, a carbon fiber network is constructed, and the network is broken by propagation of delamination cracks. This causes a change in the electric resistance of CF/polyetherethereketone matrix composites. Using three point bending specimens, delamination cracks generated without artificial initial cracks is proved to be detectable using the electric potential method: This method successfully detected delamination cracks.

Research of the crack problem of a functionally graded layer

  • Murat Yaylaci;Ecren Uzun Yaylaci;Muhittin Turan;Mehmet Emin Ozdemir;Sevval Ozturk;Sevil Ay
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.77-87
    • /
    • 2024
  • In this study, the two-dimensional crack problem was investigated by using the finite element method (FEM)-based ANSYS package program and the artificial neural network (ANN)-based multilayer perceptron (MLP) method. For this purpose, a half-infinite functionally graded (FG) layer with a crack pressed through two rigid blocks was analyzed using FEM and ANN. Mass forces and friction were neglected in the solution. To control the validity of the crack problem model exercised, the acquired results were compared with a study in the literature. In addition, FEM and ANN results were checked using Root Mean Square Error (RMSE) and coefficient of determination (R2), and a well agreement was found. Numerical solutions were made considering different geometric parameters and material properties. The stress intensity factor (SIF) was examined for these values, and the results were presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the SIF. Also FEM and ANN can be logical alternative methods to time-consuming analytical solutions if used correctly.

An active learning method with difficulty learning mechanism for crack detection

  • Shu, Jiangpeng;Li, Jun;Zhang, Jiawei;Zhao, Weijian;Duan, Yuanfeng;Zhang, Zhicheng
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.195-206
    • /
    • 2022
  • Crack detection is essential for inspection of existing structures and crack segmentation based on deep learning is a significant solution. However, datasets are usually one of the key issues. When building a new dataset for deep learning, laborious and time-consuming annotation of a large number of crack images is an obstacle. The aim of this study is to develop an approach that can automatically select a small portion of the most informative crack images from a large pool in order to annotate them, not to label all crack images. An active learning method with difficulty learning mechanism for crack segmentation tasks is proposed. Experiments are carried out on a crack image dataset of a steel box girder, which contains 500 images of 320×320 size for training, 100 for validation, and 190 for testing. In active learning experiments, the 500 images for training are acted as unlabeled image. The acquisition function in our method is compared with traditional acquisition functions, i.e., Query-By-Committee (QBC), Entropy, and Core-set. Further, comparisons are made on four common segmentation networks: U-Net, DeepLabV3, Feature Pyramid Network (FPN), and PSPNet. The results show that when training occurs with 200 (40%) of the most informative crack images that are selected by our method, the four segmentation networks can achieve 92%-95% of the obtained performance when training takes place with 500 (100%) crack images. The acquisition function in our method shows more accurate measurements of informativeness for unlabeled crack images compared to the four traditional acquisition functions at most active learning stages. Our method can select the most informative images for annotation from many unlabeled crack images automatically and accurately. Additionally, the dataset built after selecting 40% of all crack images can support crack segmentation networks that perform more than 92% when all the images are used.

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Characteristics of Elastic Waves Generated by Fatigue Crack Penetration and Growth in an Aluminum Plate

  • Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1599-1607
    • /
    • 2003
  • The characteristics of elastic waves emanated from crack initiation in 6061 aluminum alloy subjected to fatigue loading are investigated through experiments. The objective of the study is to determine the differences in the properties of the signals generated from fatigue test and also to examine if the sources of the waves could be identified from the temporal and spectral characteristics of the acoustic emission (AE) waveforms. The signals are recorded using nonresonant, flat, broadband transducers attached to the surface of the alloy specimens. The time dependence and power spectra of the signals recorded during the tests were examined and classified according to their special features. Six distinct types of signals were observed. The waveforms and their power spectra were found to be dependent on the crack propagation stage and the type of fracture associated with the signals. The potential application of the approach in health monitoring of structural components using a network of surface mounted broadband sensors is discussed.

A study on fatigue crack growth modelling by back propagation neural networks (역전파 신경회로망을 이용한 피로 균열성장 모델링에 관한 연구)

  • 주원식;조석수
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.65-74
    • /
    • 1996
  • Up to now, the existing crack growth modelling has used a mathematical approximation but an assumed function have a great influence on this method. Especially, crack growth behavior that shows very strong nonlinearity needed complicated function which has difficulty in setting parameter of it. The main characteristics of neural network modelling to engineering field are simple calculations and absence of assumed function. In this paper, after discussing learning and generalization of neural networks, we performed crack growth modelling on the basis of above learning algorithms. J'-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

  • PDF

Evaluation of Size for Crack around Rivet Hole Using Lamb Wave and Neural Network (초음파 판파와 신경회로망 기법을 적용한 리뱃홀 부위의 균열 크기 평가)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.398-405
    • /
    • 2001
  • The rivet joint has typical structural feature that can be initiation site for the fatigue crack due to the combination of local stress concentration around rivet hole and the moisture trapping. From a viewpoint of structural assurance, it is crucial to evaluate the size of crack around the rivet holes by appropriate nondestructive evaluation techniques. Lamb wave that is one of guided waves, offers a more efficient tool for nondestructive inspection of plates. The neural network that is considered to be the most suitable for pattern recognition has been used by researchers in NDE field to classify different types of flaws and flaw sizes. In this study, clack size evaluation around the rivet hole using the neural network based on the back-propagation algorithm has been tarried out by extracting some features from the ultrasonic Lamb wave for A12024-T3 skin panel of aircraft. Special attention was paid to reduce the coupling effect between the transducer and the specimen by extracting some features related to time md frequency component data in ultrasonic waveform. It was demonstrated clearly that features extracted from the time and frequency domain data of Lamb wave signal were very useful to determine crack size initiated from rivet hole through neural network.

  • PDF