• Title/Summary/Keyword: crack network

Search Result 159, Processing Time 0.025 seconds

Automatic Determination of Crack Opening Loading under Random Loading by the Use of Neural Network (신경회로망을 이용한 변동하중 하에서의 균열열림점 자동측정)

  • Gang, Jae-Yun;Song, Ji-Ho;Kim, Jeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2283-2291
    • /
    • 2000
  • The neural network method is applied to automatically measure the crack opening load under random loading. The crack opening results obtained are compared with the visual measured results. Fatigue crack growth under random loading is predicted using the crack opening data measured by the neural network method, and the prediction results are compared with experimental ones. It is found that the neural network method can be successfully applied to consistently measure the crack opening load under random loading and also gives some results different from the results by visual measurement.

A Study on the Development of Pavement Crack Recognition Algorithm Using Artificial Neural Network (신경망 학습 기법을 이용한 도로면 크랙 인식 알고리즘 개발에 관한 연구)

  • Yoo Hyun-Seok;Lee Jeong-Ho;Kim Young-suk;Sung Nak-won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.561-564
    • /
    • 2004
  • Crack sealing automation machines' have been continually developed since the early 1990's because of the effectiveness of crack sealing that would be able to improve safety, quality and productivity. It has been considered challenging problem to detect crack network in pavement which includes noise (oil marks, skid marks, previously sealed cracks and inherent noise). It is required to develop crack network mapping and modeling algorithm in order to accurately inject sealant along to the middle of cut crack network. The primary objective of this study is to propose a crack network mapping and modeling algorithm using neural network for improving the accuracy of the algorithm used in the APCS. It is anticipated that the effective use of the proposed algorithms would be able to reduce error rate in image processing for detecting, mapping and modeling crack network as well as improving quality and productivity compared to existing vision algorithms.

  • PDF

Implementation and Control of Crack Tracking Robot Using Force Control : Crack Detection by Laser and Camera Sensor Using Neural Network (힘제어 기반의 틈새 추종 로봇의 제작 및 제어에 관한 연구 : Part Ⅰ. 신경회로망을 이용한 레이저와 카메라에 의한 틈새 검출 및 로봇 제작)

  • Cho Hyun Taek;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 2005
  • This paper presents the implementation of a crack tracking mobile robot. The crack tracking robot is built for tracking cracks on the pavement. To track cracks, crack must be detected by laser and camera sensors. Laser sensor projects laser on the pavement to detect the discontinuity on the surface and the camera captures the image to find the crack position. Then the robot is commanded to follow the crack. To detect crack position correctly, neural network is used to minimize the positional errors of the captured crack position obtained by transformation from 2 dimensional images to 3 dimensional images.

Numerical study on the effect of crack network representation on water content in cracked soil

  • Krisnanto, Sugeng;Rahardjo, Harianto;Leong, Eng Choon
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.537-549
    • /
    • 2020
  • The presence of cracks changes the water content pattern during seepage through a cracked soil as compared to that of intact soil. In addition, several different crack networks may form in one soil type. These two factors result in a variation of water contents in the soil matrix part of a cracked soil during seepage. This paper presents an investigation of the effect of crack network representation on the water content of the soil matrix part of cracked soil using numerical models. A new method for the numerical generation of crack networks incorporating connections among crack endpoints was developed as part of the investigation. Numerical analysis results indicated that the difference in the point water content was large, whereas the difference in the average water content was relatively small, indicating the uniqueness of the crack network representation on the average water content of the soil matrix part of cracked soil.

Automatic crack detection of dam concrete structures based on deep learning

  • Zongjie Lv;Jinzhang Tian;Yantao Zhu;Yangtao Li
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.615-623
    • /
    • 2023
  • Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

Crack Size Determination Through Neural Network Using Back Scattered Ultrasonic Signal (저면산란 초음파 신호 및 신경회로망을 이용한 균열크기 결정)

  • Lee, Jun-Hyeon;Choe, Sang-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.52-61
    • /
    • 2000
  • The role of quantitative nondestructive evaluation of defects is becoming more important to assure the reliability and the safety of structure, which can eventually be used for residual life evaluation of structure on the basis of fracture mechanics approach. Although ultrasonic technique is one of the most widely used techniques for application of practical field test among the various nondestructive evaluation technique, there are still some problems to be solved in effective extraction and classification of ultrasonic signal from their noisy ultrasonic waveforms. Therefore, crack size determination through a neural network based on the back-propagation algorithm using back-scattered ultrasonic signals is established in this study. For this purpose, aluminum plate containing vertical or inclined surface breaking crack with different crack length was used to receive the back-scattered ultrasonic signals by pulse echo method. Some features extracted from these signals and sizes of cracks were used to train neural network and the neural network's output of the crack size are compared with the true answer.

Crack detection based on ResNet with spatial attention

  • Yang, Qiaoning;Jiang, Si;Chen, Juan;Lin, Weiguo
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Deep Convolution neural network (DCNN) has been widely used in the healthy maintenance of civil infrastructure. Using DCNN to improve crack detection performance has attracted many researchers' attention. In this paper, a light-weight spatial attention network module is proposed to strengthen the representation capability of ResNet and improve the crack detection performance. It utilizes attention mechanism to strengthen the interested objects in global receptive field of ResNet convolution layers. Global average spatial information over all channels are used to construct an attention scalar. The scalar is combined with adaptive weighted sigmoid function to activate the output of each channel's feature maps. Salient objects in feature maps are refined by the attention scalar. The proposed spatial attention module is stacked in ResNet50 to detect crack. Experiments results show that the proposed module can got significant performance improvement in crack detection.

Concrete crack detection method using artificial intelligence (인공지능을 이용한 콘크리트 균열탐지 방법)

  • Song, Won-Il;Ramos-Sebastian, Armando;Lee, Ja-Sung;Ji, Dong-Min;Park, Se-Jin;Choi, Geon;Kim, Sung-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.245-246
    • /
    • 2022
  • Typically, the methods of crack detection on concrete structures include some problems, such as a low accuracy and expensive. To solve these problems, we proposed a neural network-based crack search method. The proposed algorithm goes through three convolutions and is classified into crack and non-crack through the softmax layer. As a result of the performance evaluation, cracks can be detected with an accuracy of 99.4 and 99.34 % at the training model and the validation model, respectively.

  • PDF

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.