• Title/Summary/Keyword: crack intensity

Search Result 1,187, Processing Time 0.025 seconds

A Fracture Mechanic's Study for Crack Growth Retardation Phenomenon using Effective Plastic Zone Concept (균열성장 지연현상에 대한 유효 소성역 개념을 사용한 파괴역학적 연구)

  • Kang, Yong-Goo;Lee, Tae-Won;Park, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.112-120
    • /
    • 2015
  • In this study, the growth rate of surface cracks (da/dN) during the retardation period was analyzed in terms of effective stress intensity factor range(${\Delta}K_{eff}^*$) obtained by using the proposed effective plastic zone concept. Effective stress intensity factors obtained by using the effective plastic zone concept were smaller than those obtained by using Willenborg analysis. On the growth rate of surface cracks analyzed by ${\Delta}K$, the dependence of overload stress levels appears. On the growth rate by ${\Delta}K_{eff}$ obtained by Willenborg analysis, there is a linear relationship with two different slops between da/dN and ${\Delta}K_{eff}$. However, on the growth rate by ${\Delta}K_{eff}^*$ obtained by the proposed effective plastic zone concept, there is a linear relationship between da/dN and ${\Delta}K_{eff}^*$ that coincides with the results of constant amplitude loading.

An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens (점용접시편의 극한하중과 피로특성에 관한 실험적 고찰)

  • Lee, Hyeong-Il;Kim, Nam-Ho;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

An Analysis of Stress Intensity Factors of Composite Materials by Boundary Element Method (BEM) (경계요소법(BEM)에 의한 복합재료의 응력확대계수 해석)

  • 이갑래;조상봉;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.179-189
    • /
    • 1991
  • Composite materials are generally treated as anisotropic or an orthotropic materials. Unlike isotropic materials, the orthotropic materials can divided three groups depending upon the relationship of the four material constants or depending upon the characteristic roots of orthotropic materials. In particular, the fundamental solutions of two dimensional BEM for composite materials (orthotropic or anisotropic material) generally have a singularity in the conventional method when the characteristic roots are equal. In consideration of this singularity in the conventional method when the characteristic roots are equal. In consideration of this singular problems, in this paper, the fundamental solutions of BEM are systematically analysed for orthotropic materials. And the stress and displacement fields for a crack in an orthotropic materials are singular when the characteristic roots of orthotropic materials are equal. Therefore, these fields for a crack in an orthotropic materials are analysed by the analogous method to isotropic materials when the characteristic roots are equal.

Fatigue Life Estimation of Cruciform Welded Joint Considering Multiple Collinear Surface Cracks (십자형 필렛용접 이음부의 복수균열 진전수명 평가)

  • Han Seung Ho;Shin Byung Chun;Kim Jae Hoon;Han Jeong Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1549-1557
    • /
    • 2004
  • Fatigue life of welded joints is governed by the propagation of multiple collinear surface cracks distributed randomly along weld toe. These cracks propagate under the mechanisms of mutual interaction and coalescence of the adjacent two cracks. To estimate the fatigue life, its influences on the above two mechanisms should be taken into account, which appear through the stress intensity factors disturbed mutually. However, it is difficult to calculate the stress intensity factors of the multiple surface cracks located in vicinity of weld toe due to its geometrical complexity. They are calculated normally by using the Μk-factors, but such Mk-factors are very rare in literature. In this study, the Μ$textsc{k}$-factors were obtained from a parametric study on crack length and depth, for which a finite element method is used. A fatigue test for a cruciform welded Joint was conducted and the fatigue life of the tested specimen was estimated using the present method with the informations obtained from the test, such as the number, size, and locations of the cracks. The estimated and measured fatigue life showed a good agreement.

Fracture Mechanical Fatigue Strength Evaluation of IB-Type Spot Welded Lap Joint under Tension-Shear Load (인장-전단하중을 받는 IB형 일점 Spot 용접이음재의 파괴역학적 피로강도 평가)

  • 손일선;정원석;이휘광;배동호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.20-27
    • /
    • 1998
  • According as the member of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. And, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic evaluation method for them. In this study, by considering nugget edge of the spot weld part of the IB-type spot welded lap joint under tension-shear load to the ligament crack. fatigue strength of various IB-type spot welded lap joints was estimated with the stress intensity factor(S.I.F.) KIII which is fracture mechanical parameter. We could find that fatigue strength evaluation of the IB-type spot welded lap joints by KIII is more effective than the maximum principal stress ($\sigma$1max) at edge of the spot weld obtained from FEM analysis.

  • PDF

Analysis on the Fracture of a Panel Glass in a Liquid Crystal Display Module under Mechanical Shock (액정 디스플레이(LCD)의 패널유리 파손평가에 관한 연구)

  • Park, Sang-Hu;Lee, Bu-Yun;Eom, Yun-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.76-81
    • /
    • 2000
  • Analysis on failure of the panel glass under mechanical shock is the main topic of this study. Since the glass for the LCD panel is thin, it needs to be designed to have enough toughness against mechanical shock. In this paper, a process of estimating fracture of the panel glass is proposed to guarantee reliability of the product. The fracture toughness of the panel glass is used as a criterion of the fracture based on an experimental approach. The stress intensity factor was calculated considering a model with the largest initial crack size on a cut surface and with the boundary force obtained from a dynamic finite element analysis. Critical surface roughness on the cut surface of a typical glass panel, to prevent fracture in case of bending mode, is obtained.

  • PDF

The impact analysis of interface crack in dissimilar materials using the 2-D laplace transformed BEM (2차원 Laplace 변환 경계요소법에 의한 이종재료 접합면 균열의 충격해석)

  • 김태규;조상봉;최선호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1158-1168
    • /
    • 1994
  • For BEM analyses of the impact problems of dissimilar materials, the connected multi-region method using perfect bonded conditions on the interface boundaries was added to two-dimensional Laplace transformed-domain BEM program for a single region analysis. It was confirmed that the BEM results of impact problems of a single-region and multi-regions for a homogeneous isotropic material are agreed well. The two-dimensional Laplace transformed-domain BEM program combined with connected multi-region method was applied to analyse several impact problems of dissimilar materials. Also the feasibility of BEM impact analyses was investigated for dissimilar materials by the analysis of the BEM results for impact problems of dissimilar materials in terms of physical aspects. As for an application, the two-dimensional Laplace transformed BEM concerning impact problems of cracks at the interface of dissimilar materials and the determinating process of the dynamic stress intensity factors by extrapolation method are presented in this paper.

The Influence of Marine Environmental Factor on the Corrosion Fatigue Fracture of SS41 Steel (SS41강의 부식피로파양에 미치는 해양환경인자의 영향)

  • 김원영;임종문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • Corrosion fatigue test was performed by the use of plane bending fatigue tester in marine environment having various specific resistance from 25(natural sea water) to 5000.ohm.cm. It is in order to investigate the effects of marine environmental factor on the corrosion fatigue fracture of SS41 steel. The main results obtained are as follows; 1. The aspect ratio(b/a) of corner crack growing in natural sea water is lower than that in air. 2. The surface crack growth rate(da/dN) in marine environment is faster than that in air and da/dN delaies with the specific resistance increased. 3. The experimental constant m of paris rule [da/dN=C(${\delta}$K)$^m$] decrease with the specific resistance decreased and the effect of corrosion in proportion to the specific resistance is more sensitive than that of stress intensity factor range(${\delta}$K) under region II. 4. The accelerative factor(${\alpha}$) in marine environment is about 1.1-2.7 and .alpha. is increase under the low region of stress intensity factor range(${\delta}$K). 5. The electrode potential($E_0$) gets less noble potential with the specific resistance decreased.

  • PDF

A Feasibility Study on the Damage Detection of Infinite Beams Using the Structural Intensity Measurement Technique (진동 인텐시티 계측 방법을 이용한 무한보의 손상감지에 관한 기초 연구)

  • Huh, Young-Cheol;Lee, Jong-Won;Kim, Jae-Kwan;Kil, Hyun-Gwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.54-58
    • /
    • 2008
  • The structural intensities have been applied to understand a source point and the path of vibrational energy flows in interested structures by many researchers. In this paper, a feasibility study was carried out to investigate the characteristics of a damaged beam with a inflicted open crack using the structural intensities. The damaged beam was taken as a continuous system with equivalent bending stiffness and the flexural vibrations were only considered in numerical simulation and experiments. A four(4)-transducer array was used to measure the flexural vibrations of the beam and the structural intensities were estimated by means of cross spectral density method. As a result, the magnitude changes of the structural intensities could be observed in the vicinity of the damage location and a damage index was newly proposed to identify the damage zone. It has been confirmed that the measurement of the structural intensities was simple and effective method to find out the damage zone.

  • PDF

Analysis of Interfacial Surface Crack Perpendicular to the Surface (표면에 수직한 계면방향 표면균열의 해석)

  • 최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.277-284
    • /
    • 1993
  • Interfacial surface crack perpendicular to the surface, which is imbedded into bonded quarter planes under single anti-plane shear load is analyzed. The problem is formulated using Mellin transform, form which single Wiener-Hopf equation is derived. By solving the equation stress intensity factor is obtained in closed form. This solution can be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.