• Title/Summary/Keyword: crack intensity

Search Result 1,187, Processing Time 0.025 seconds

A Study on the High Strength of porcelain insulators for transmission line (송전용 자기재 현수애자의 고강도 특성 연구)

  • Cho, H.G.;Han, S.W.;Park, K.H.;Choi, Y.K.;Lee, D.I.;Choi, I.H.;Kim, T.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.85-88
    • /
    • 2003
  • In this study, porcelain insulator samples which have a different alumina composition were manufactured in order to test electrical and mechanical properties and make an analysis of the propagation phenomena of micro cracks on porcelain body. From XRD quantitative analysis the crystalline phases were different with alumina composition, sample C and D which have about 17wt% Corundum phase without the Cristobalite phase shows better electrical and mechanical properties than sample A and 8 which have the Cristobalite phase. In dielectrics test on porcelain samples with below 17wt% alumina composition, it was found that the amount of glass phase$(SiO_2)$have an main effect to decrease the dielectric loss$(tan{\delta})$, and the dielectric breakdown voltage of aluminous porcelain insulators was largely affected by its relative density. As a micro cracks analysis, HRS were measured, then the intensity of HRS increased with the amount of alumina composition. On the other hand, the propagation behaviors of cracks was fairly influenced by the distribution of pores.

  • PDF

Study on Characteristics of Porcelain Insulators for High Strength with Alumina Composition (알루미나 조성에 따른 고강도 자기 애자의 특성 연구)

  • 조한구;한세원;박기호;최연규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.353-359
    • /
    • 2004
  • In this study. porcelain insulator samples which have a different alumina composition were manufactured in order to test electrical and mechanical properties and make an analysis of the propagation phenomena of micro cracks on porcelain body. From XRD quantitative analysis the crystalline phases were different with alumina composition, sample C and D which have about l7wt% Corundum phase without the Cristobalite phase shows better electrical and mechanical properties than sample A and B which have the Cristobalite phase. In dielectrics test on porcelain samples with below l7wt% alumina composition, it was found that the amount of glass phase(SiO$_2$) have an main effect to decrease the dielectric loss(tan$\delta$), and the dielectric breakdown voltage of aluminous porcelain insulators was largely affected by its relative density. As a micro tracks analysis, HRB were measured, then the intensity of HRB increased with the amount of alumina composition. On the other hand, the propagation behaviors of cracks was fairly influenced by the distribution of pores.

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

The Effects of Grain Size on the Degradation Phenomena of PZT Ceramics (입자의 크기가 PZT 세라믹스의 열화현상에 미치는 영향)

  • 정우환;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 1992
  • The effect of grain size on the time-dependent piezoelectrice degradation of a poled PZT of MPB composition Pb0.988Sr0.012 (Zr0.52Ti0.48)O3 with 2.4 mol% of Nb2O5 was studied, and the degradation mechanism was discussed. Changes in the internal bias field and the internal stress both responsible for the time-dependent degradation of poled PZT were examined by the polarization reveral technique, XRD and Vickers indentation, respectively. The piezoelectric degradation increased with increasing time and grain size, and the internal bias field due to space charge diffusion decreased with increasing grain size of poled PZT. The internal bias field, however, was almost insensitive to the degradation time regardless of the grain size. On the other hand, both the x-ray diffraction peak intensity ratio of (002) to (200) and the fracture behavior including the crack propagation support that the ferroelectric domain rearrangement of larger grain size showed rapid relaxation of the internal stress compared with smaller one, which is thought the origin of the larger piezoelectric degradation in the former. In conclusion, the contribution of space charge diffusion on the piezoelectric degradation of PZT is strongly dependent on both the grain size and the composition. Thus, the relaxation of internal stress due to the ferroelectric domain rearrangement as well as the amount and time-dependence of the internal bias field due to space charge diffusion should be considered simultaneously in the degradation mechanism of PZT.

  • PDF

Static Tensile Strength Evaluation of Notched Coeposite Materials (노치를 갖는 복합재료의 정적강도평가(I))

  • 김윤해;김영식;서곡홍신
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.19-29
    • /
    • 1993
  • The static tensile tests of GFRP, ID300, CFRID300 and CFRPEEK were made on the plain and notched specimens at room temperature. The results were discussed based on linear notch mechanics which was proposed by H.Nistani. The fracture of notched GFRP, ID300, CFRID300 and CFRPEEK specimens is controlled by the elastic maximum stress, $({\sigma}_max)$, and the notch root racius,$\rho$, alone, independently of the other geometrical conditions. The relation between fracture nominal stress,$({\sigma}_max)$, and stress concentration factor, $K_t$ and a part where $({\sigma}_c)$ is nearly constant independent of $K_t$. A similar phenomenon can be seen in the fatigue tests of notched specimes under rotating bending or push-pull. The almost constant $({\sigma}_c)$ values correspond to the nearly constant apparent stress intensity factor, $K_{1pc}$ values, obtained by assuming ,$\rho$=0. This can be attributed to the existence of the stable crack. Linear notch mechanics is very useful for analyzing the static tensile fracture behavior of notched GFRP, ID300, CFRPEEK specimens.

  • PDF

A Study on Failure Analysis of Low Pressure Trubine Blade Using AFM and FEM (AFM과 FEH을 이용한 저압 터빈 블레이드의 파손해석에 관한 연구)

  • Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1705-1712
    • /
    • 2001
  • Mechanical component has striation with constant width and SEM can estimate fracture type and loading condition. SEM has benefit to fatigue fracture analysis but striation can be observed according to the kind of material and range of crack growth rate and can't. In this case, it needs AFM that can measure 3-dimensional surface profile with resolution of atomic size. In this study. to find fracture reason of torsion-mounted blade in nuclear plant, we estimate the relation between stress intensity factor range and root mean square roughness in 12% Cr steel by AFM and predict in-service loading condition of turbine blade. failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

Initiation and Propagation Behaviors of Micro-Surface-Fatigue Cracks under In-Plane Tension Fatigue Tests (引張 軸荷重 疲勞 에 의한 微小表面 균열 의 發생 . 成長擧動)

  • 서창민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1985
  • In-plane tension fatigue tests (R = 0.05) were carried out to investigate the initiation and propagation behaviors of micro-surface-fatigue cracks on smooth surfaces of a mild steel. Also, the investigations of saturated cyclic strain which can be obtained by the fatigue tests have been made via the cyclic strain intensity factor, .DELTA. $K_{\epsilon}$/, for the purpose of unifying two approaches of the study of fatigue; the one approach is based on the fracture mechanics concept and the other on lowcycle fatigue concept. Some of the results are as follows; The growth rate, d(2a)/dN, of small cracks cannot be represented by one straight line as a function of .DELTA.K for various of the nominal stress range, .DELTA..sigma., and is higher than that of a larger through crack. The rearrangement of the d(2a)/dN by .DELTA..epsilon..root..pi.s( = .DELTA. $K_{\epsilon}$/) with the stress range .DELTA..epsilon. in .DELTA.K replaced by .DELTA..epsilon., strain range, gives one straight line of the .DELTA. $K_{\epsilon}$-d(2a)/dN relation for various values of stress range .DELTA.$_{\epsilon}$../.X>../.

Development of Multi-channel Eddy Current System for Inspection of Press Rolls (압연롤 검사를 위한 다중 센서 와전류 탐상 검사 시스템 개발)

  • Lee, Jae-Ho;Park, Tae-Sung;Park, Ik-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.306-312
    • /
    • 2017
  • Press rolls are constantly exposed to physical and heat stresses on their surface and are prone to crack, bruise, and spall if the accumulated stress goes beyond the critical point. Such surface phenomenon can cause them to lose their functionality and eventually lead to a halted production line. Eddy current testing can be considered a useful method to investigate the surface of the roll. The method involves the application of a high intensity magnetic field onto the surface of the roll, and thereby finding any early stage of possible defects. When the method was applied for roll inspection, the cross section of the sensor was regulated as per the overall testing speed. A smaller cross sectional area implied a better resolution but a longer testing time. In this paper, a convenient method to increase both overall system resolution and inspection speed of eddy current roll inspection is suggested by using a devised array sensor structure.

Mechanical and fracture properties of glass fiber reinforced geopolymer concrete

  • Midhuna, M.S.;Gunneswara Rao, T.D.;Chaitanya Srikrishna, T.
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.29-45
    • /
    • 2018
  • This paper investigates the effect of inclusion of glass fibers on mechanical and fracture properties of binary blend geopolymer concrete produced by using fly ash and ground granulated blast furnace slag. To study the effect of glass fibers, the mix design parameters like binder content, alkaline solution/binder ratio, sodium hydroxide concentration and aggregate grading were kept constant. Four different volume fractions (0.1%, 0.2%, 0.3% and 0.4%) and two different lengths (6 mm, 13 mm) of glass fibers were considered in the present study. Three different notch-depth ratios (0.1, 0.2, and 0.3) were considered for determining the fracture properties. The test results indicated that the addition of glass fibers improved the flexural strength, split tensile strength, fracture energy, critical stress intensity factor and critical crack mouth opening displacement of geopolymer concrete. 13 mm fibers are found to be more effective than 6 mm fibers and the optimum dosage of glass fibers was found to be 0.3% (by volume of concrete). The study shows the enormous potential of glass fiber reinforced geopolymer concrete in structural applications.

A Study on the Fracture Surface Growth Behavior of Steel used for Frame of Vehicles by Corrosion Fatigue (자동차 프레임용 강재의 부식피로에 의한 파면성장거동에 관한 연구)

  • Lee, Sang-Yoel;Im, Jong-Mun;Im, U-Jo;Lee, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.61-70
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane bending fatigue tester in marine environment and investigated fracture surface growth behavior of base metal and heat affected zone corrosion fatigue. The main results obtained are as follows: 1) Fracture surface growth of heat affected zone (HAZ) is delayed more than that of base matel (BM), and they tend to faster in seawater than in air. 2) Corrosion sensitivity to corrosion fatigue life of HAZ is more susceptible than that of BM. 3)In the case of the corner crack by corrosion fatigue, the correlation between the propagation rate of fracture surface area(dA/dN) and stress intensity factor range(ΔK) for SAPH45 are applied to Paris rule as follows: dA/dN=C(ΔK) super(m) where m is the slope of the correlation, and is about 6.60-6.95 in air and about 6.33-6.41 in seawater respectively.

  • PDF