• Title/Summary/Keyword: crack initiation time

Search Result 101, Processing Time 0.029 seconds

Relationship Between the Initiation and Propagation of SCC and the Electrochemical Noise of Alloy 600 for the Steam Generator Tubing of Nuclear Power Plants

  • Kim, Y.S.;Nam, H.S.;Kwon, Y.H.;Kim, S.W.;Kim, H.P.;Chang, H.Y.
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.57-66
    • /
    • 2010
  • Since nuclear power plants are being operated under high temperature and high pressure, on-line monitoring technique to detect corrosion could be more effective than off-line method in shut-off period. In this operating condition, electrochemical noise method may be suitable to monitor the corrosion. This paper aims the analysis on the relation between the cracking and electrochemical noise signal of Alloy 600 under U-bending. When electrochemical noise monitoring technique was used during SCC test, it was judge to be obvious that if cracks generate, its generation can be detected by electrochemical current noise. Cracking-related noise was defined as the noise showing 5~10 times greater than the average value of background noise bands. On the base of crack noise, crack initiation time was determined. From SCC test and electrochemical noise monitoring in $25^{\circ}C$, 0.1 M $Na_2S_4O_6$ solution (Reverse U-Bended Alloy 600 SE+), average crack initiation time was obtained as 9,046 seconds and from its initiation time, it could be defined that net crack propagation rate is the crack length divided by ${\Delta}T$(= total test period - crack initiation time). Therefore, average net crack propagation rate was obtained to be $1.18{\times}10^{-9}\;m/s$.

Analysis of the Elbow Thickness Effect on Crack Location and Propagation Direction via Elastic-Plastic Finite Element Analysis (탄소성 유한요소 해석을 통한 곡관 두께에 따른 파손 위치 및 균열 진전 방향 분석)

  • Jae Yoon Kim;Jong Min Lee;Yun Jae Kim;Jin Weon Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.26-35
    • /
    • 2022
  • When piping system in a nuclear power plant is subjected to a beyond design seismic condition, it is important to accurately determine possibility of crack initiation and, if initiation occurs, its location and time. From recent experimental works on elbow pipes, it was found that the crack initiation location and crack propagation direction of the SA403 WP316 stainless steel elbow pipe were affected by the pipe thickness. In this paper, the crack initiation location and crack propagation direction for SA403 WP316 stainless steel elbow pipes with different thickness were analyzed via elastic-plastic finite element analysis. Based on FE results, the effect of the pipe thickness on different crack initiation location and crack propagation direction was analyzed using ovality, stress and strain components. It was also confirmed that the presence of internal pressure had no effect on the crack initiation location and crack propagation direction.

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Correlation between chloride-induced corrosion initiation and time to cover cracking in RC Structures

  • Hosseini, Seyed Abbas;Shabakhty, Naser;Mahini, Seyed Saeed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.257-273
    • /
    • 2015
  • Numerical value of correlation between effective parameters in the strength of a structure is as important as its stochastic properties in determining the safety of the structure. In this article investigation is made about the variation of coefficient of correlation between effective parameters in corrosion initiation time of reinforcement and the time of concrete cover cracking in reinforced concrete (RC) structures. Presence of many parameters and also error in measurement of these parameters results in uncertainty in determination of corrosion initiation and the time to crack initiation. In this paper, assuming diffusion process as chloride ingress mechanism in RC structures and considering random properties of effective parameters in this model, correlation between input parameters and predicted time to corrosion is calculated using the Monte Carlo (MC) random sampling. Results show the linear correlation between corrosion initiation time and effective input parameters increases with increasing uncertainty in the input parameters. Diffusion coefficient, concrete cover, surface chloride concentration and threshold chloride concentration have the highest correlation coefficient respectively. Also the uncertainty in the concrete cover has the greatest impact on the coefficient of correlation of corrosion initiation time and the time of crack initiation due to the corrosion phenomenon.

Surface Crack Detection in Compression of Pre Heat-Treated Steel (ESW90) Using an Acoustic Emission Sensor (음향방출센서를 이용한 선조질강(ESW90)의 압축실험에서의 표면 균열 발생 검출)

  • Lee, J.E.;Lee, J.M.;Joo, H.S.;Seo, Y.H.;Kim, J.H.;Kim, S.W.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • In the design of the metal forming processes, various types of ductile fracture criteria are used to predict crack initiation and to fabricate metallic products without any defects. However, the quantitative measurement method for determination of crack initiation is insufficient. It is very difficult to detect crack initiation in ductile metals with excellent deformability because no significant load drop is observed due to crack generation. In this study, the applicability of acoustic emission sensors, which are commonly used in facility diagnostics, to measure crack initiation during the metal forming process was analyzed. Cylindrical notch specimens were designed using the finite element method to induce a premature crack on the surface of pre heat-treated steel (ESW90) material. In addition, specimens with various notch angles and heights were prepared and compression tests were carried out. During the compression tests, acoustic emission signal on the dies and images of the surface of the notch specimen were recorded using an optical camera in real time. The experimental results revealed that the acoustic emission sensor can be used to detect crack initiation in ductile metals due to severe plastic deformation.

Properties of Defect Initiation and Fatigue Crack Growth in Manufacturing Process of Bearing Metal (베어링메탈 제조공정에 따른 결함발생 및 피로균열 전파특성)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.3-8
    • /
    • 2015
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step(sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased by the second step(rolling process of sintered plate ; Series B). After the third step(re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process effects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at junction between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF

Statistical analysis of parameter estimation of a probabilistic crack initiation model for Alloy 182 weld considering right-censored data and the covariate effect

  • Park, Jae Phil;Park, Chanseok;Oh, Young-Jin;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • To ensure the structural integrity of nuclear power plants, it is essential to predict the lifetime of Alloy 182 weld, which is used for welding in nuclear reactors. The lifetime of Alloy 182 weld is directly related to the crack initiation time. Owing to the large time scatter in most crack initiation tests, a probabilistic model, such as the Weibull distribution, has mainly been adopted for prediction. However, since statistically more advanced methods than current typical methods may be applied, we suggest a statistical procedure for parameter estimation of the crack initiation time of Alloy 182 weld, considering right-censored data and the covariate effect. Furthermore, we suggest a procedure for uncertainty evaluation of the estimators based on the bootstrap method. The suggested statistical procedure can be applied not only to Alloy 182 weld but also to any material degradation data set including right-censored data with covariate effect.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

EVALUATION AND TEST OF A CRACK INITIATION FOR A 316 SS CYLINDRICAL Y-JUNCTION STRUCTURE IN A LIQUID METAL REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • A liquid metal reactor (LMR) operated at high temperatures is subjected to both cyclic mechanical loading and thermal loading; thus, creep-fatigue is a major concern to be addressed with regard to maintaining structural integrity. The Korea Advanced Liquid Metal Reactor (KALIMER), which has a normal operating temperature of $545^{\circ}C$ and a total service life time of 60 years, is composed of various cylindrical structures, such as the reactor vessel and the reactor baffle. This study focuses on the creepfatigue crack initiation for a cylindrical Y-junction structure made of 316 stainless steel (SS), which is subjected to cyclic axial tensile loading and thermal loading at a high-temperature hold time of $545^{\circ}C$. The evaluation of the considered creep-fatigue crack initiation was carried out utilizing the ${\sigma}_d$ approach of the RCC-MR A16 guide, which is the high-temperature defect assessment procedure. This procedure is based on the total accumulated strain during the service time. To confirm the evaluated result, a high-temperature creep-fatigue structural test was performed. The test model had a circumferential through wall defect at the center of the model. The defect front of the test model was investigated after the $100^{th}$ cycle of the testing by utilizing a metallurgical inspection technique with an optical microscope, after which the test result was compared with the evaluation result. This study shows how creep-fatigue crack initiation for a high-temperature structure can be predicted with conservatism per the RCC-MR A16 guide.

New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment

  • Geon Woo Jeon;Sung Woo Kim;Dong Jin Kim;Chang Yeol Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4481-4490
    • /
    • 2022
  • In this study, a new rupture disk corrosion test (RDCT) method was developed for real-time detection of stress corrosion cracking (SCC) initiation of Alloy 600 in a primary water environment of pressurized water reactors. In the RDCT method, one side of a disk specimen was exposed to a simulated primary water at high temperature and pressure while the other side was maintained at ambient pressure, inducing a dome-shaped deformation and tensile stress on the specimen. When SCC occurs in the primary water environment, it leads to the specimen rupture or water leakage through the specimen, which can be detected in real-time using a pressure gauge. The tensile stress applied to the disk specimen was calculated using a finite element analysis. The tensile stress was calculated to increase as the specimen thickness decreased. The SCC initiation time of the specimen was evaluated by the RDCT method, from which result it was found that the crack initiation time decreased with the decrease of specimen thickness owing to the increase of applied stress. After the SCC initiation test, many cracks were observed on the specimen surface in an intergranular fracture mode, which is a typical characteristic of SCC in the primary water environment.