• Title/Summary/Keyword: crack growth properties

Search Result 241, Processing Time 0.027 seconds

An Experimental Equation on the Fatigue Crack Growth Rate Behavior (피로 균열 전파 거동에 대한 실험식)

  • Kim, Sang-Chul;Kang, Dong-Myeong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 1991
  • We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.

  • PDF

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel (Grade 91 강의 고온 균열진전 실험 결과와 설계 물성치의 비교)

  • Lee, Hyeong-Yeon;Kim, Woo-Gon;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCC-MRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

A Study on Corrosion Fatigue Properties of Welded Joints for TMCP High Strength Steels (TMCP 고장력강 용접부의 부식도영 특성에 관한 연구)

  • 이택순;이휘원;김영철
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.14-23
    • /
    • 1996
  • The corrosion fatigue test were carried out to evaluate the fatigue characteristics of accelerated cooled (ACC) TMCP high tensile strength steels and weld joint with high heat input by one side one run submerged are welding. In this paper, the fatigue crack growth behaviors were investigated with the center crack tension specimen of base metal and heat affected zone in substitute sea water and air, respectively Main results obtained are sunnarized as follows: 1. The fatigue crack growth rates in sea water faster than those in air environment for the different heat input values, crack growth rate of base metal is very fast and effect of heat input is not remarkable. 2. In HAZ (82kJ/cm, 116kJ/cm), the crack branching phenomena were observed in both air and sea water environment, 3. In SEM observation, the corrosion effect on base metal was larger than that on HAZ in corrosion environment.

  • PDF

Characterization of Creep-Fatigue Crack Growth Behavior for HAZ Crack Using {TEX}$C_{t}${/TEX} ($C_t$를 사용한 용접열영향부 균열의 크리프-피로 균열성장거동 특성화)

  • 백운봉;서창민;윤기봉
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • Creep-fatigue crack growth behavior at the heat affected zone of 1Cr-0.5Mo steel weldment has been experimentally studied. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the {TEX}$C_{t}${/TEX} estimated with the equation proposed by the previous finite element analysis work. It was concluded that the {TEX}$C_{t}${/TEX} values calculated from the properties of parent metal were quite comparable to the accurate {TEX}$C_{t}${/TEX} values calculated from both of weld and parent metals. Scatter of data was claimed due to the difference of exact location of the cracks in HAZ. The cracks have a tendency to change their path from the original location eventually to the relatively soft HAZ(ie, near-FGHAZ region, fine grained heat affected zone).

  • PDF

Application of Coating Technique for Measurement of Elevated Temperature Fatigue Crack Growth Behavior (고온 피로균열 성장거동 관찰을 위한 코팅기술의 응용)

  • 남승훈;김용일;서창민;김동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.60-66
    • /
    • 2002
  • The remote measurement system(RMS) as a new experimental method is limited in its application to crack measurement at elevated temperatures because of the oxide layer on the specimen surface. Since TiAIN and Cr coating layers have a high resistance to oxidation and wear, this paper proposed a TiAIN and Cr coating technique for specimens to facilitate the measurement of crack growth behavior using RMS. To investigate the effects of the coating layer, tension and fatigue tests were carried out at room temperature and at $538^{\circ}C$. The test material was 1Cr-1Mo-0.25V steel which is widely used as a turbine rotor material. From the experimental results, it was found that the mechanical properties of the TiAIN and Cr coated specimens were similar to those of the substrate. Accordingly, the TiAIN and Cr coated layer had hardly any influence on the fatigue crack propagation.

Effects of PWHT on Weld Metal Properties of YS 460 MPa Steels for Ship and Offshore Structures (선박·해양 구조물용 YS 460 MPa 강재의 용접금속 특성에 미치는 PWHT의 영향)

  • Kang, Chang-Yong;Jeong, Sang-Hoon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.75-79
    • /
    • 2014
  • This paper has an aim to study the effect of PWHT(for 140min. at $600^{\circ}C$) on FCAW weld metal properties (tensile, charpy impact and CTOD value) of YS 460 MPa steels for ship and offshore structures. On the basis of these study, it was found that strength was decreased and elongation was increased by PWHT. These phenomenon resulted from the reduction of acicula ferrite volume fraction by grain growth. Also, Charpy impact and CTOD value were decreased by PWHT. These phenomenon resulted from grain growth. Because the grain boundary grown by PWHT can play a role as crack initiation site and make the crack propagate more easily. Although weld metal properties were decreased by PWHT, tensile and impact properties could meet the class societies requirements for welds of YS 460 MPa steel, but decrease of fracture toughness need to be consider seriously.

Effects of Metallic Parameters for Distribution of Fatigue Crack Growth Rate - Dependence of Grain Size -; (피로크랙진전속도의 분포에 대한 금속학적 인자의 영향 - 결정입자 의존성 -)

  • Yoon, Han-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2141-2147
    • /
    • 1996
  • The strength of material is scattered owing to the inhomogenity of microstructure, in spite of the same material. Therefore, in order to design the mechanical structure with the reliability engineering, it is important to grasp the statistical nature of material strength. In this paper, effects of grain sezes for the statistical nature of the fatigue crack growth was discussed. And the statistical nature of mechanical properties was compared with the statistical nature of the fatigue crack growth rate.

Evaluation of Creep Crack Growth Failure Probability for High Temperature Pressurized Components Using Monte Carlo Simulation (몬테카를로법을 이용한 고온 내압 요소의 크리프 균열성장 파손확률 평가)

  • Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.28-34
    • /
    • 2006
  • A procedure of estimating failure probability is demonstrated for a pressurized pipe of CrMo steel used at $538^{\circ}C$. Probabilistic fracture mechanics were employed considering variations of pressure loading, material properties and geometry. Probability density functions of major material variables were determined by statistical analyses of implemented data obtained by previous experiments. Distributions of the major variables were reflected in Monte Carlo simulation and failure probability as a function of operating time was determined. The creep crack growth life assessed by conventional deterministic approach was shown to be conservative compared with those obtained by probabilistic one. Sensitivity analysis for each input variable was also conducted to understand the most influencing variables to the residual life analysis. Internal pressure, creep crack growth coefficient and creep coefficient were more sensitive to failure probability than other variables.

A Study on Propagation Behavior of Surface-Fatigue-Crack in the Mild Steel at Elevated Temperatures (軟鋼의 高溫 表面渡勞균열 成長擧動에 관한 硏究)

  • ;;北川英夫
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.425-433
    • /
    • 1983
  • Fatigue tests by axial loading (R=0.1) were carried out to investigate fatigue crack growth properties of small surface cracks in mild steel at room temperature, 250.deg. C and 400.deg. C, by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present tests are determined as a function of the stress intensity factor range, so that the applicability of liner fracture mechanics to the fatigue crack growth of surface cracks at elevated temperatures is investigated and discussed in comparison with the data of type 304 stainless steel at room temperature and elevated temperature. The obtained results are as follows: 1) Relations of both surface fatigue crack length and its depth to cycle ratio fall within a narrow scatter band in spite of different stress levels. 2) The .DELTA. .sigma. .root. .pi. a-da/dN relation of surface fatigue crack growth at room temperature is independent of the stress level and can be plotted as a straight line at log-log diagram, but the relation at 400.deg. C depends partly on the stress level. 3) Relations of the fatigue crack growth into depth d(2b)/dN and is stress intensity factor range .DELTA. $K_{I}$, accounted for the aspect ratio variation, fall within a narrow scatter band for wide range of the applied stress levels. And .DELTA. $K_{I}$E-d(2b)/dN relations of mild steel at different stress level coincide relatively well with the data of type 304 stainless steel. 4) The value of aspect ratio obtained by a beach mark method and a temper coloring method approaches about 0.9 in common with crack growth and it is independent of stress level and temperatures. 5) The equi-crack length curve is parallel to S-N$_{f}$ curve at elevated temperatures.s.s.s.