• Title/Summary/Keyword: crack growth properties

Search Result 241, Processing Time 0.029 seconds

An Experimental Study on the Quality and Crack Healing Characteristics of Repair Mortar Containing Self-Healing Solid Capsules of Crystal Growth Type (결정성장형 자기치유 고상캡슐을 혼합한 보수 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, self - healing solid capsules of crystal growth type which can be mixed directly with repair mortar were prepared, and the quality and crack healing performance of repair mortar with self - healing solid capsules were evaluated. The table flow and the air flow rate of the repair mortar material mixed with self-healing solid capsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to constant water head permeability test, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Impact Properties and Fractography of Structural Materials for LNG Tank at Cryogenic Temperatures (LNG 저장탱크용 재료의 극저온 충격특성과 파면해석)

  • Shin Hyung-Seop;Lee Hae-Moo;Shin Ju-Yeong;Park Jong-Seo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • In order to investigate the impact properties of structural materials for LNG tank, instrumented Charpy impact tests were carried out at cryogenic temperatures. $9\%$ Ni steel showed a superior fracture resistance because of less degradation in toughness until 77 K. From the load-deflection curve obtained by an instrumented methods it was found that with the decrease of temperature from 173 K to 77 K, the peak load in the curve increased, but the total absorbed energy decreased. In addition, the energy absorbed during the crack growth was larger than one absorbed in the process of crack initiation. In SUS304L material, the energy absorbed in the process of the crack initiation was relatively large, but the energy absorbed in the process of crack growth was small, the behavior of absorbed energy was well agreed with the observations of the fracture surface which showed a relatively smooth fracture surface. The absorbed Charpy impact energy in the case of A5083 alloy was lower as compared with other steels, and some cracks were observed along the crack propagation direction at the fracture surface of 77 K.

  • PDF

Mechanical Properties of $Zr(Y,Ce)O_2$ TZP After Aging in Hydrothermal Conditon ($Zr(Y,Ce)O_2$ TZP의 수열분위기 시효후의 기계적 성질)

  • 손영국;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1390-1395
    • /
    • 1999
  • Zr(Y,Ce)O2 TZP ceramics were prepared by sintering compacts of 3 mol% Y2O3-TZP(3Y-TZP) powders with different amount of 12 mol% CeO2-TZP(12Ce-TZP) in air at 140$0^{\circ}C$ for 2 h. The phase changes microstructure and mechanical properties of Zr(Y. Ce)O2 TZP after hydrothermal aging(20$0^{\circ}C$ 5h) were investigated. Although an addition of 12Ce-TZP accelerated the grain growth of Zr(Y, Ce)O2 TZP it restrained the transformation of tetragonal to the monoclinic phase during aging. The degradation in mechanical properties of sintered bodies was governed by the formed monoclinic phase and chemical composition. Induced Vickers indentation crack was propagated intergranually. From SEM observation of the fracture surfaces the pull-out of individual grain was confirmed.

  • PDF

Evaluation of Mechanical Properties of Highly Porous Titanium Considering its Application as a Biomaterial

  • Schiefer, Herwig;Bram, Martin;Buchkremer, Hans Peter;Stover, Detlev
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.309-310
    • /
    • 2006
  • Porous titanium implants can be produced by powder metallurgy in combination with suitable space holder materials. Various mechanical experiments were done to characterize this material regarding the influence of the processing parameters on microstructure and mechanical properties taking into account the properties of the human bone. In this paper, the anistropic behaviour of uniaxially compacted samples was analysed in compression tests and compared to the behaviour of isostatically pressed samples. The failure of the struts of the porous titanium and the crack- initiation and -growth was examined by in-situ SEM analysis.

  • PDF

Influence of Steel-making Process and Heat-treatment Temperature on the Fatigue and Fracture Properties of Pressure Vessel Steels (제강 및 열처리 조건이 압력용기강의 피로 및 파괴특성에 미치는 영향)

  • Koh, S.K.;Na, E.G.;Baek, T.H.;Park, S.J.;Won, S.Y.;Lee, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as vacuum degassing(VD) and electro-slag remelting(ESR) methods. After the steel-making process, they were normalized at $955^{\circ}C$, quenched at $843^{\circ}C$, and finally tempered at $550^{\circ}C$ or $450^{\circ}C$, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-cycle fatigue(LCF) tests, fatigue crack growth rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process.

  • PDF

Evaluation of Degradation Behavior of the Long-Term Serviced Boiler Header (장기 사용 보일러 헤더의 열화거동 평가에 관한 연구)

  • Gwon, Jae-Do;Bae, Yong-Tak;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1673-1680
    • /
    • 2000
  • The degradation of a boiler header constructed by a material, 1Cr-0.5Mo steel in a fossil power plant is observed when the header is exposed for a long period to the high temperature and pressure. The present investigations are for evaluating the effect of the degradation on the material, such as its strength changes. Reheat-treated metal is used to compare the mechanical properties of the degraded and that of reheat-treated materials. Through the investigation, following results are obtained 1) the area ratio of ferrite in the reheat-treated material is larger than that of the degraded material, 2) the hardness and tensile strength of the degraded material are lower than that of the reheat-treated material, 3) the ductile-brittle transition temperature(DBTT) increased toward high temperature region, 4) the fatigue crack growth rate(FCGR) of the degraded material is higher than that of the reheat-treated material in the region of low ΔK value while FCGR of the both materials are similar in high ΔK region.

Properties of HVPE prepared GaN substrates (HVPE법으로 제작한 GaN 기판의 특성)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.67-70
    • /
    • 1998
  • In this work, the freestanding GaN single crystalline substrates without cracks were grown by hydride vapor phase epitaxy (HVPE). The GaN substrates, having a current maximum size of 350 $\mu\textrm{m}$-thickness and 10${\times}$10 $\textrm{mm}^2$ area, were obtained by HVPE growth GaN on sapphire substrate and subsequent mechanical removal of the sapphire substrate. A lattice constant of c$\_$0/=5.18486 ${\AA}$ and a FWHM of DCXRD was 650 arcsec for the single crystalline freestanding GaN substrate. The low temperature PL spectrum consist of excitonic emission and deep donor to acceptor pair recombination at 1.8 eV. The Raman E$_2$ (high) mode frequency was 567 cm$\^$-1/ which was the same as that of strain free bulk single crystals. The Hall mobility and carrier concentration was 283 $\textrm{cm}^2$/V$.$sec and 1.1${\times}$10$\^$18/ cm$\^$-3/, respectively. The freestanding and crack-free GaN single crystalline substrate suitable for the homoepitaxial growth of GaN, and the HVPE method are promising approaches for the preparation of large area, crack-free GaN substrates.

  • PDF

Formation of La-$\beta$-Aluminate in $\alpha$-Alumina Matrix and Its Influence on Mechanical Properties (La-$\beta$-Aluminate의 형성이 $\alpha$-Alumina의 기계적 성질에 미치는 영향)

  • 강석원;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.1
    • /
    • pp.23-28
    • /
    • 1992
  • Alumina ceramics was reinforced by in-situ formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The powder mixture of which composition is (100-12x)Al2O3+x(La2O3+11Al2O3) was prepared for the formation of La-${\beta}$-aluminate in ${\alpha}$-alumina matrix. The amount of La-${\beta}$-aluminate in the matrix was controlled by varing x which is number of moles. The dense composite was produced by sintering at 1600$^{\circ}C$ in air or hot-pressing at 1550$^{\circ}C$ under 30 MPa. Bending strength and fracture toughness were increased, resulting from the grain growth inhibition and the crack deflection and crack bridging mechanism when La-${\beta}$-aluminate was produced in ${\alpha}$-alumina matrix.

  • PDF

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF