• Title/Summary/Keyword: crack growth properties

Search Result 241, Processing Time 0.029 seconds

Crack Growth Life Estimation and Reliability Analysis of High Temperature Turbine (고열 터빈의 균열성장수명 평가 및 신뢰성 분석)

  • Jang, Byung-Wook;Park, Jung-Sun;Kim, Hyun-Jae;Chen, Seung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.350-353
    • /
    • 2009
  • In the fatigue analysis and the components design, uncertainties are caused by the variances of geometry data and applied loads, and the scatter of material properties. In this paper, fatigue crack growth life of turbine is evaluated by fracture mechanics and the reliability analysis is accessed by the fist order second moment method and Monte Carlo simulation.

  • PDF

Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates (강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성)

  • Lee Yong-Bok;Oh Byung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

The Effect of Long Term Thermal Aging on High Temperature Mechanical Properties in STS316 (장시간 시효처리가 316 스트인리스 강의 고온 기계적 성질에 미치는 영향)

  • 임지우;정찬서;임병수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2002
  • At elevated temperature, very complex precipitations occur in STS316. To investigate the effect of the precipitation on mechanical properties in SIS316, tensile tests and fatigue crack growth tests were carried out at $650^{\circ}C$ using artificially degraded materials. The material degradation was simulated by aging for up to 20000 hrs. at $750^{\circ}C$, which is equal to 179000hrs (about 20yrs) of service life at $650^{\circ}C$, after conducting solution treatment for 20 min. at $11300^{\circ}C$. The result of the hardness test and the tensile test showed that both properties are closely related to the mean free distance of carbides. Also, from the results of fracture tests at $650^{\circ}C$, ${\triangle}K_{th}$, after values were found to decrease as aging time and microstructure, as the volume fraction of $\sigma$ phase increased.

A Study on The Strength Evaluation of welded Joints for Degraded Material (열화재 용접부의 강도평가에 관한 연구)

  • 정의정;윤한용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-710
    • /
    • 2002
  • Welding is used not only during the shipbuilding, but also during the repairing of ships. While repairing of ships, it is inevitable to weld new materials with degraded materials. In this case, it is predicted that the strength of both the sections is not identical each other. In this study, the respective welded joints in terms of mechanical properties such as microstructure, mechanical strength and fatigue crack propagation, with the component obtained from the barge used for a long-term period, were analyzed. It was found that the material degradation had a significant effect on the welded joints. The fatigue crack propagation in welded sections showed a big difference. The rate of fatigue crack growth of degraded material for both heat affected zone and parent metal was faster than that of new material. By contrast, The result within identical materials showed that the heat-affected zone was slower than that of parent metal

  • PDF

A Study on the Fatigue Properties of Boron Steel (AISI 51B20) (보론 첨가강(AISI 51B20재)의 피로특성에 관한 연구)

  • 윤성훈;이종형;이경모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.802-806
    • /
    • 2001
  • Chrome-molybden steel or chrome steel for machine structural use been shown to excellent hardenability adding boron of a small amount at low carbon steel. In the country boron steel has been used widely high strength volt and wear resistant components of construction equipment. SEM results showed classical fatigue fractures, consistent with surface crack initiation. The speciments were cycled using under load controlled rotary bending fatigue tests. In this study, the fatigue crack initiation as well as the fatigue crack growth behavior and the fracture mechanism were investigated through observations of fracture surface boron steel(AISI 51B20).

  • PDF

A methodology for assessing fatigue life of a countersunk riveted lap joint

  • Li, Gang;Renaud, Guillaume;Liao, Min;Okada, Takao;Machida, Shigeru
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2017
  • Fatigue life prediction of a multi-row countersunk riveted lap joint was performed numerically. The stress and strain conditions in a highly stressed substructure of the joint were analysed using a global/local finite element (FE) model coupling approach. After validation of the FE models using experimental strain measurements, the stress/strain condition in the local three-dimensional (3D) FE model was simulated under a fatigue loading condition. This local model involved multiple load cases with nonlinearity in material properties, geometric deformation, and contact boundary conditions. The resulting stresses and strains were used in the Smith-Watson-Topper (SWT) strain life equation to assess the fatigue "initiation life", defined as the life to a 0.5 mm deep crack. Effects of the rivet-hole clearance and rivet head deformation on the predicted fatigue life were identified, and good agreement in the fatigue life was obtained between the experimental and the numerical results. Further crack growth from a 0.5 mm crack to the first linkup of two adjacent cracks was evaluated using the NRC in-house tool, CanGROW. Good correlation in the fatigue life was also obtained between the experimental result and the crack growth analysis. The study shows that the selected methodology is promising for assessing the fatigue life for the lap joint, which is expected to improve research efficiency by reducing test quantity and cost.

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.207-207
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson,s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF

The Strength and Fracture Behavior characteristics of Irradiated Zr-2.5Nb CANDU Pressure Tube Materials (Zr-2.5Nb 중수로 압력관의 조사후 강도 및 파괴거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.510-519
    • /
    • 2001
  • The tensile and fracture toughness tests have been conducted to investigate the degradations of mechanical properties induced mainly by neutron irradiations in Zr-2.5Nb CANDU pressure tube materials operated in Wolsung Unit-1. the tests were performed at room, 150, 200, 250, 300 $\^{C}$ for the irradiated and unirradiated specimens in hot cell. The specimens were directly machined from the tube retaining original curvature using specially designed electric discharge machine(EDM). From the tensile tests of the irradiated specimens, it was found that tensile strength was increased and total elongation was decreased compared to those of the unirradiated ones. The active voltages in the fracture toughness tests for the irradiated showed the discontinuous abrupt increases caused by crack jumping in lower temperature. In the crack resistance curves we found the stable crack growth in the unirradiated, whereas the unstable and three crack growth stages in the irradiated specimens due to the accumulated irradiation defects. The various fracture characteristic values in the irradiated are remarkably lower than those of the unirradiated. Through the fractography, we found in the irradiated that smaller dimple and shorter fissures than the unirradiated, and that the fractured surface had three regions that were flat, transition and slant/shear area. These can explain the difference in the crack growth characteristic values of the irradiated and the unirradiated ones.

A study on the properties in phase change of Y-Ba-Cu-O system superconductor (Y-Ba-Cu-O계 초전도체의 상변화에 따른 특성연구)

  • 조보연;채기병;강기성;소대화
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.90-96
    • /
    • 1994
  • In this paper, an experiment about the fabrication method of superconductor was made in order to obtain crystal structure by making High T$\sub$C/, superconductor Y$_1$Ba$_2$Cu$_3$O$\sub$x/ to Y$_2$Ba$_1$Cu$_1$O$\sub$x/ of nonsuperconductor phase was added. 211 phase, which can approach crystal structure and growth-orientatoun, was used as seed in the 123 phase which shows the properties of superconductor. Therefore crystal growth effect was able to be attained. And the effect is expected to eleminate thin crack in the growth-process and to improve electrical properties by adding Ag to High T$\sub$c/ superconductor Y$_1$Ba$_2$Cu$_3$O$\sub$x/ combined with Y$_2$Ba$_1$Cu$_1$O$\sub$x/ .