• Title/Summary/Keyword: crack defect

Search Result 294, Processing Time 0.023 seconds

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

A Study on Non-Destructive Safety Evaluation Platform of Internal Defects of the Composite Hydrogen Tank using Finite Element Analysis (유한요소해석을 이용한 수소압력용기 비파괴 시험 평가 플랫폼의 안전성 기준 개발 연구)

  • Yongwoo Lee
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.3-10
    • /
    • 2022
  • In this study, damage resulting from internal flaws was investigated by finite element analysis for the safety evaluation of a non-destructive testing platform for hydrogen pressure vessels. A specimen was modeled and calculated using finite element analysis to determine material properties in accordance with the parameters of the composite material in order to assess the safety of the Type 4 hydrogen pressure vessel. Through this, flaws in the hydrogen pressure vessel were modeled, and test conditions were provided in accordance with rules to look into whether there was safety. Delamination, foreign object, and vertical cracks were modeled for internal flaws, and damage was examined in accordance with failure criteria. As the delamination defect approached the interior of the hydrogen pressure tank, it became more likely to cause damage. Additionally, as the crack depth grew in the case of vertical cracks, the likelihood of crack propagation rose. On the other hand, it was anticipated that the foreign item defect would suffer more damage from the outside in. A non-destructive testing platform will be used to assess the safety of fuel cell vehicles that are already in operation in future research.

Application of principal component analysis and wavelet transform to fatigue crack detection in waveguides

  • Cammarata, Marcello;Rizzo, Piervincenzo;Dutta, Debaditya;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.349-362
    • /
    • 2010
  • Ultrasonic Guided Waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes a SHM method based on UGWs, discrete wavelet transform (DWT), and principal component analysis (PCA) able to detect and quantify the onset and propagation of fatigue cracks in structural waveguides. The method combines the advantages of guided wave signals processed through the DWT with the outcomes of selecting defect-sensitive features to perform a multivariate diagnosis of damage. This diagnosis is based on the PCA. The framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a PXI platform that controls the generation and measurement of the ultrasonic signals by means of piezoelectric transducers made of Lead Zirconate Titanate. Although the approach is demonstrated in a beam test, it is argued that the proposed method is general and applicable to any structure that can sustain the propagation of UGWs.

Dislocation structure in hot-pressed polycrystalline $TiB_{2}$ (고온가압성형된 다결정 $TiB_{2}$내에서 전위구조)

  • Kwang Bo Shim;Brian Ralph;Keun Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.194-202
    • /
    • 1996
  • Transmission electron microscopy has been used to characterize the dislocation structure in hot-pressed titanium diboride. The thin foil samples were prepared by the conventional ion beam thinning technique and reveal the main features associated with the dislocations ; low-angle grain boundaries with dislocation arrays, high-angle grain boundaries with ledges/steps on the boundary planes. The ledges/steps on the grain boundaries were characterized as the origin of defect structures such as dislocation formation or crack propagation near grain boundaries. A fraction of the high angle grain boundaries contained periodic arrays of grain boundary dislocations. The Burger's vectors of the dislocations in the $TiB_{2}$specimens were determined.

  • PDF

Structures and Defects in Welds of High Strengths Al Alloys by Using GTAW (GTAW에 의한 Al 합금 용접부의 조직 및 결합에 대한 연구)

  • 하려선;정병호;박화순
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.540-546
    • /
    • 2003
  • Recently Al alloys are being used gradually for structural materials of transports. In welding of Al alloys used for transports, good weldabilities as well as adequate mechanical properties of the welds should be ensured as structural materials. In this study, the welds formation, macro and microstructural characteristics, generation of defects and hardness distribution in welds of Al alloys of 5083, 6N01 and 7N01 by DCSP- and AC-GTA welding process, were investigated. The deeper penetration was obtained in all welds of the alloys by DCSP-GTAW with He gas, compared with those by using AC-GTAW. The 6N01 alloy showed high susceptibilities to solidification cracking in weld metal and liquation cracking in HAZ of the welding beads of both DCSP- and AC-GTAW process. The cracking ratio of 6N01 alloy was increased with increasing of welding current. The porosity ratios in weld metal of all alloys used were extremely low including all welding conditions of DCSP-GTAW. However, in AC-GTAW process, the porosity ratios of the welds using Ar gas showed much higher values than those using He gas.

Ultrasonic Testing Simulation in Austenitie Stainless Steel Weld by Ray Tracing Technique (선추적기법을 활용한 오스테나이트계 스텐레스강 용접부 초음파탐상 모의)

  • Lee, S.L.;Lim, H.T.;Park, C.S.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.1
    • /
    • pp.310-317
    • /
    • 1995
  • Crack detection technique by ultrasonics in structures and components made of austenitic stainless steel often loses its reliability due to the material characteristics during inservice inspection of nuclear power plants, especially in the area of detection and sizing in centrifugally cast stainless steel pipings. In order to understand and overcome this problem, computer program for tracing the ultrasonic rays within material has been developed to simulate the process of defect detection within weld. The program simulates through transmission and reflection technique in crack detection of austenitic stainless steel as well as ultrasonic beam propagation through multiple media including stainless steel cladding interface.

  • PDF

Nondestructive Test of Optical Connector by Resonant Ultrasound Spectroscopy Method (공명초음파분광법에 의한 광컨넥터용 결합소자의 비파괴검사)

  • Kim, Sung-Hoon;Lee, Kil-Sung;Kim, Dong-Sik;Kim, Young-Nam;Jeong, Sang-Hwa;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a ceramic ferrule and a ball lens. The ceramic ferrules are cylinderical shape with $\phi$ 2.56mm diameter and l0mm in length. Crack lengths of these ferrules are 10.40$\mu$m, 21.18$\mu$m and 32.35$\mu$m. The spherical ball lens was made of BK-7 glass, one's diameter in 2mm and 5mm. RUS system is consisted of spectrum analyzer, power amplifier, PZT sensor and support frame. The principle of RUS is that the mechanical resonant frequency of the materials depends on density and the coefficient of elasticity. Rus system is based on that given resonant frequency of the materials can be represented by the function of density and the coefficient of elasticity, and it is applied to excite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and defective ones. Defect evaluation by RUS are performed to investigate the natural frequency measure of ferrule and ball lens.

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

A New Method of Health Monitoring for Press Processing Using AE Sensor (음향방출센서를 이용한 프레스공정에서의 새로운 건전성 평가 연구)

  • Jeong, Soeng-Min;Kim, JunYoung;Jeon, Kyung Ho;Hong, SeokMoo;Oh, Jong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.249-255
    • /
    • 2020
  • This study developed the health monitoring method of press process using the acoustic emission (AE) sensor and high-pass filter. Also, the AE parameters such as ring-down count and peak amplitude are used. Based on this AE signal, the AE parameters were acquired and was utilized to detect the crack of the specimen. Since the defect detection is difficult due to noise and low magnitude of signal, the signal noise and press operation frequency were checked through the Short Time Fourier Transform(STFT) and damped. High-pass Filtering data was applied to AE parameters to select effective parameters. By using this signal processing techniques, the proposed AE parameters could improve the performance of defect detection in the press process.