• Title/Summary/Keyword: crack assessment

Search Result 396, Processing Time 0.022 seconds

Load bearing capacity reduction of concrete structures due to reinforcement corrosion

  • Chen, Hua-Peng;Nepal, Jaya
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.455-464
    • /
    • 2020
  • Reinforcement corrosion is one of the major problems in the durability of reinforced concrete structures exposed to aggressive environments. Deterioration caused by reinforcement corrosion reduces the durability and the safety margin of concrete structures, causing excessive costs in managing these structures safely. This paper aims to investigate the effects of reinforcement corrosion on the load bearing capacity deterioration of the corroded reinforced concrete structures. A new analytical method is proposed to predict the crack growth of cover concrete and evaluate the residual strength of concrete structures with corroded reinforcement failing in bond. The structural performance indicators, such as concrete crack growth and flexural strength deterioration rate, are assumed to be a stochastic process for lifetime distribution modelling of structural performance deterioration over time during the life cycle. The Weibull life evolution model is employed for analysing lifetime reliability and estimating remaining useful life of the corroded concrete structures. The results for the worked example show that the proposed approach can provide a reliable method for lifetime performance assessment of the corroded reinforced concrete structures.

Free vibration analysis of multiple open-edge cracked beams by component mode synthesis

  • Kisa, M.;Brandon, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.81-92
    • /
    • 2000
  • This study is an investigation of the effect of cracks on the dynamical characteristics of a cantilever beam, having multiple open-edge transverse cracks. The flexibilities due to crack have been identified for several crack depths and locations. In the study the finite element method and component mode synthesis methods are used. Coupling the components is performed by a flexibility matrix taking into account the interaction forces. Each component is modelled by cantilever beam finite elements with two nodes and three degrees of freedom at each node. The results obtained lead to conclusion that, by using the drop in the natural frequencies and the change in the mode shapes, the presence and nature of cracks in a structure can be detected. There is some counter-evidence, however, that the effects due to multiple cracks may interact to make detection more difficult than for isolated cracks.

Application of Probabilistic Fracture Mechanics Methodology (확률론적 파괴역학 수법의 적용성 검토)

  • 이준성;곽상록;김영진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.667-670
    • /
    • 2001
  • For major structural components periodic inspections and integrity assessments are needed for the safety. However, many flaws are undetectable because sampling inspection is carried out during in-service inspection. Probabilistic integrity assessment is applied to take into consideration of uncertainty and variance of input parameters arise due to material properties and undetectable cracks. This paper describes a Probabilistic Fracture Mechanics(PEM) analysis based on the Monte Carlo(MC) algorithms. Taking a number of sampling data of probabilistic variables such as fracture toughness value, crack depth and aspect ratio of an initial surface crack, a MC simulation of failure judgement of samples is performed. For the verification of this analysis, a comparison study of th PFM analysis using a commercial code, mathematical method is carried out and a good agreement was observed between those results.

  • PDF

Establishment of Fracture Mechanics Fatigue Life Analysis Procedures for Offshore Tubular Joints -part II : Fatigue Life Analysis for a Multi-Plan Tubular Joint (해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법의 설정)

  • Rhee, H. C.
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.87-100
    • /
    • 1989
  • 해양구조물의 원통형 조인트에 대한 파괴역학적 피로수명 산출방법이 개발되었다. 개발된 방법을 이용해서 2평면 K형 조인트에 대한 피로수명을 구체적인 파괴역학적 방법으로 산출 하였다. 이 분석을 위해 용접부위 표면균열의 응력확대 계수를 3차원 유한요소법에 의해 계산하였다. 계산된 결과에 의하면 용접부위 표면균열 첨단은 단순한 Mode I형태를 보이지 않고 Mode I, II, III이 복합된 형태임이 입증되었다. 계산된 응력확대 계수를 사용해서 16개의 용접부위균열 성장형태를 일반적인 피로균열 성장법칙을 적용해서 계산하였고, 균열성장의 안정분석을 통해 각 균열의 최종 파괴상태를 파괴해석도면(failure assessment diagram)법을 이용해서 계산하였다.

  • PDF

Repair Performance of Engineered Cementitious Composites(ECC) Treated with Wet-Mix Spraying Process

  • Kim, Yun-Yong
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.207-211
    • /
    • 2006
  • This paper presents an experimental study on the repair performance of sprayed engineered cementitious composites(ECC) serving as a repair material. Sprayable ECC, which exhibit tensile strain-hardening behavior in the hardened state and maintain sprayable properties in the fresh state, have been developed by using a parallel control of micromechanical design and rheological process design. The effectiveness of sprayable ECC in providing durable repaired structures was assessed by spraying the ECC and testing them for the assessment. The experimental results revealed that, when sprayed ECC were used as a repair material, both load carrying capacity and ductility represented by the deformation capacity at peak load of the repaired flexural beams were obviously increased compared to those of commercial prepackaged mortar(PM) repaired beams. The significant enhancement in the energy absorption capacity and tight crack width control of the ECC repair system treated with wet-mix spraying process suggests that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

Reliability assessment of concrete bridges subject to corrosion-induced cracks during life cycle using artificial neural networks

  • Firouzi, Afshin;Rahai, Alireza
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.91-107
    • /
    • 2013
  • Corrosion of RC bridge decks eventually leads to delamination, severe cracking and spalling of the concrete cover. This is a prevalent deterioration mechanism and demands for the most costly repair interventions during the service life of bridges worldwide. On the other hand, decisions for repairs are usually made whenever the extent of a limit crack width, reported in routine visual inspections, exceeds an acceptable threshold level. In this paper, while random fields are applied to account for spatial variation of governing parameters of the corrosion process, an analytical model is used to simulate the corrosion induced crack width. However when dealing with random fields, the Monte Carlo simulation is apparently an inefficient and time consuming method, hence the utility of neural networks as a surrogate in simulation is investigated and found very promising. The proposed method can be regarded as an invaluable tool in decision making concerning maintenance of bridges.

A Study on the Fatigue Life Assessment for Load-carrying Fillet Welded Joints using Stress Intensity Factor (응력확대계수를 이용한 하중 전달형 필릿 용접부의 피로강도 평가에 관한 연구)

  • Kim, Myung-Hyun;Kang, Sung-Won;Kim, Hyoung-Rae
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.97-102
    • /
    • 2008
  • It is well known that there exist two typical fatigue crack initiation locations in ship structures: one is the weld toe and the other is the weld root where partial penetration weld is performed. In particular, it is important for fillet weldments to avoid weld root cracking in order to prevent catastrophic failure particularly in ship structures. Therefore detail considerations are required for cruciform joints with partial penetration when there is a possibility of weld root crack initiation. For these reasons, fatigue tests on welded joints were performed in this study. Concept of stress intensity factor(SIF) by means of fracture mechanics is applied for predicting fatigue life of fillet welded joints.

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Using Hot-spot Stress Approach (Hot-spot 응력을 이용한 십자형 필렛 용접재의 피로강도 평가)

  • Seok, Chang-Sung;Kim, Dae-Jin;Koo, Jae-Mean;Seo, Jung-Won;Goo, Byeong-Choon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1488-1493
    • /
    • 2005
  • In this study, fatigue tests to obtain S-N curves and FE analyses to obtain structural stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curve of load carrying joint to that based on hot spot stress. As a result, the S-N curve of load carrying joint based on hot-spot stress was almost exactly coincided with that of non load-carrying joint based on nominal stress. So we have conducted that the fatigue strength of a welded joint with different geometry from the non stress distribution along the expected crack path.

Efficiency Assessment of Crack Maintenance Material Using Ultra Fine Cement (초미립자시멘트를 이요한 균열보수재 성능평가 연구)

  • 백인관;박현수;정란
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1095-1100
    • /
    • 2000
  • Concrete structure often exhibit cracks due to the combination of material construction and design error. Minor crack can be tolerated depending on exposure condition, but major cracks are aesthetically unpleasant and affect the durability and safety of the structure. All of the reinforced concrete structure have many inevitable cracks for various reason such as drying shrinkage, heat liberation of cement and over loads. Epoxy resin injection widely used for repairing cracks in concrete is too sensitive to high temperature. Besides, the problem in the epoxy resin injection is the difficulty of quality control after execution. Whereas, Ultra Fine Cement is similar in coefficient of thermal expansion and modulus of elasticity to concrete. The objective of the study is to find out that it is possible for Ultra Fine Cement to be used for repairing cracks in reinforced concrete.

Investigation of the Contributions of Creep and Thermal Fatigue to Failure of a High-Intermediate Pressure Steam Turbine Casing

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • The contribution of damage mechanisms to failure of steam turbine casing made of Cr-Mo-V steel was investigated. Creep-fatigue interaction on the HP side corner of turbine casing was revealed as the root cause of the catastrophic failure performed by metallurgical analysis. The steady-state pressure and transient thermal stress were analyzed based on the actual operating condition of the thermal plant. Damage of creep-fatigue interaction to crack initiation was evaluated with multiaxial effects. The contribution ratio of creep and fatigue to the crack initiation was estimated to 3:1. Temporary geometrical correct action with repair weld was executed. For long-term operation, design improvement of casing equipment for creep resistance should be needed.