• 제목/요약/키워드: crack angle

검색결과 429건 처리시간 0.036초

Fatigue Crack Retardation and Retardation Mechanism in Variable Loading (The Effects of Crack Tip Branching in Crack Growth Retardation)

  • Song, Sam-Hong;Kwon, Yun-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권3호
    • /
    • pp.76-81
    • /
    • 2002
  • In order to study the fatigue crack and retardation mechanism in variable loading, the effects of crack tip branching in crack growth retardation were examined. The characteristics of crack tip branching behavior were considered with respect to microstructure and crack tip branching angle was examined. Crack tip branching was observed along the grain boundary of finite and pearlite structure. It was found that the branching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving farce to branching angle was examined. The effective crack driving farce (K$\_$eff/) decreased as the branching angle increased. The rate of decrease was 33% for kinked type and 29% for forked one. It was confirmed that the effect of crack tip branching is a very important factor in crack growth retardation. Therefore, crack branching effect should be considered in building the hypothetical model to predict crack growth retardation.

변동하중하에서의 피로크랙 지연현상과 지연기구에 관한 연구 - 균열성장 지연현상에 미치는 균열 가지의 영향 - (A Study on Fatigue Crack Retardation and Retardation Mechanism in Variable Loading)

  • 송삼홍;권윤기
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.83-89
    • /
    • 1997
  • In order to study on fatigue crack retardation and retardation mechanism in variable loading, the effects of crack tip branching in fatigue crack growth retardation were examined. The characteristics of crack tip banching behavior was considered to micro structure. It was examined that the variation of crack tip branching angle. Crack tip branching was observed along the grain boundary of ferrite and pearlite structure. It was found that the abanching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving force to branching angle was examined. The effective crack driving force ( $K_{\eff}$ ) decreased as the braching angle increases. The rate of decrease was 33% for the kinked type and 29% for the forked one. It was confirmed that the effect of crack tip branching is a very important factor in fatigue crack growth retardation. Therefore, crack branching effect should be considered building the hypoth- etical model to predict crack growth retardation.

  • PDF

철근콘크리트 부재의 균열 후 강성 이론 (Theoretical Stiffness of Cracked Reinforced Concrete Elements)

  • 김장훈
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.79-88
    • /
    • 1999
  • The purpose of this paper is to develop a mathematical expression for computing crack angles based on reinforcement volumes in the longitudinal and transverse directions, member end-fixity and length-to-width aspect ratio. For this a reinforced concrete beam-column element is assumed to possess a series of potential crack planes represented by a number of differential truss elements. Depending on the boundary condition, a constant angle truss or a variable angle truss is employed to model the cracked structural concrete member. The truss models are then analyzed using the virtual work method of analysis to relate forces and deformations. Rigorous and simplified solution schemes are presented. An equation to estimate the theoretical crack angle is derived by considering the energy minimization on the virtual work done over both the shear and flexural components the energy minimization on the virtual work done over both the shear and flexural components of truss models. The crack angle in this study is defined as the steepest one among fan-shaped angles measured from the longitudinal axis of the member to the diagonal crack. The theoretical crack angle predictions are validated against experimentally observed crack angle reported by previous researchers in the literature. Good agreement between theory and experiment is obtained.

콘크리트 전단 기여분 결정을 위한 균열묘사 방법 (Crack Modelling to Determine Concrete Contribution to Shear Resistance)

  • 조순호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.872-877
    • /
    • 2003
  • The fixed-angle based modified compression field theory (MCFT) was developed to include the slip deformation across the crack, thereby allowing for the non-coincident directions of the principal strain and stress. To investigate the significance of crack modelling on the analysis, a series of tests on beams without transverse reinforcement was predicted by both rotating- and fixed-angle crack models within the frame of the MCFT. The results predicted by the fixed-angle MCFT were comparable to those by the rotating-angle MCFT when the initial crack angle of 45deg. and the related friction law are used.

  • PDF

Effects of number and angle of T Shape non persistent cracks on the failure behavior of samples under UCS test

  • Sarfarazi, V.;Asgari, K.;Maroof, S.;Fattahi, Sh
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.31-45
    • /
    • 2022
  • Experimental and numerical simulation were used to investigate the effects of angle and number of T shape non-persistent crack on the shear behaviour of crack's bridge area under uniaxial compressive test. concrete samples with dimension of 150 mm×150 mm×40 mm were prepared. Within the specimen, T shape non-persistent notches were provided. 16 different configuration systems were prepared for T shape non-persistent crack based on two and three cracks. In these configurations, the length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 30°, 60° and 90°. Similar to cracks configuration systems in the experimental tests, 28 models with different T shape non-persistent crack angle were prepared in numerical model. The length of cracks were taken as 4 cm and 2 cm based on the cracks configuration systems. The angle of larger crack related to horizontal axis was 0°, 15°, 30°, 45°, 60°, 75° and 90°. Tensile strength of concrete was 1 MPa. The axial load was applied to the model. Displacement loading rate was controlled to 0.005 mm/s. Results indicated that the failure process was significantly controled by the T shape non-persistent crack angle and crack number. The compressive strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the crack number and crack angle. The strength of samples decreased by increasing the crack number. In addition, the failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods (PFC2D).

A Study on the Initial Crack Curving Angle of Isotropic/Orthotropic Bimaterial

  • Hawong, Jai-Sug;Shin, Dong-Chul;Lee, Ouk-Sub
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1594-1603
    • /
    • 2002
  • In this paper, when the initial propagation angle of a branched crack is calculated from the maximum tangential stress criterion (MTSC) and the minimum strain energy density criterion (MSEDC), it is essential that you use stress components in which higher order terms are considered and stress components at the position in a distance 0.005㎜ from the crack tip (=r). When an interfacial crack propagates along the interface at a constant velocity, the initial propagation angles of the branched crack are similar. to the mode mixities (phase angle) and the theoretical values obtained from MTSC and MSEDC. The initial propagation angle of the branched crack depends considerably on the stress intensity factor K$_2$.

혼합모드하중을 받는 매석배관강의 피로균열전파 거동 (Fatigue crack propagation of buried pipe steel under mixed model loading)

  • 이억섭;최용길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.473-476
    • /
    • 2000
  • Recently, many studies focus on mixed-mode fatigue-fracture characteristics of characteristics of materials. In order to reveal crack initiation and propagation mechanisms in combined -mode fatigue. This paper investigates the initiation and propagation behavior of the fatigue crack of the STS304 specimens under mixed mode loading conditions. moreover crack arrest and branch phenomena were analyzed with respect to the change do the angle of inclined loading. The relationship between the angle of inclined loading and the angle of branched crack was studied. A greate number of cycles are necessary to initiate a new crack from the initial crack. The direction of the new crack propagation is determined by MTS theory.

  • PDF

Experimental study on rock-coal-rock composite structure with different crack characteristics

  • Li, Tan;Chen, Guangbo;Li, Qinghai
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.377-390
    • /
    • 2022
  • The stability of the roof rock-coal pillar-floor rock composite structure is of great significance to coal mine safety production. The cracks existing in the composite structure seriously affect the stability of the roof rock-coal pillar-floor rock composite structure. The numerical simulation tests of rock-coal-rock composite structures with different crack characteristics were carried out to reveal the composite structures' mechanical properties and failure mechanisms. The test results show that the rock-coal-rock composite structure's peak stress and elastic modulus are directly proportional to the crack angle and inversely proportional to the crack length. The smaller the crack angle, the more branch cracks produced near the main control crack in the rock-coal-rock composite structure, and the larger the angle between the main control crack and the crack. The smaller the crack length, the larger the width of the crack zone. The impact energy index of the rock-coal-rock composite structure decreases first and then increases with the increase of crack length and increases with the increase of crack angle. The functional relationships between the different crack characteristics, peak stress, and impact energy index are determined based on the sensitivity analysis. The determination of the functional relationship can fully grasp the influence of the crack angle and the crack length on the peak stress and impact energy index of the coal-rock composite structure. The research results can provide a theoretical basis and guidance for preventing the instability and failure of the coal pillar-roof composite structure.

섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동 (Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate)

  • 남현욱;김용환;정성욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.204-209
    • /
    • 2001
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

  • PDF

디지털 화상관련법 및 균열선단열림각도를 이용한 입자강화 복합재료의 균열저항거동 (Crack Resistance Behavior Using Digital Image Correlation and Crack Tip Opening Angle on Particulate Reinforced Composite)

  • 나성현;이정원;김재훈
    • 대한기계학회논문집A
    • /
    • 제40권12호
    • /
    • pp.1021-1026
    • /
    • 2016
  • 본 연구는 점탄성을 가진 HTPB 입자강화 복합재료의 균열저항에 대하여 쐐기분열시험 및 균열선단열림각도를 이용하여 평가하였다. 일반적으로 균열진전 함수로서 균열선단열림각도는 파괴저항을 결정하기 위해 사용되며, 수치적으로 일정한 값을 가진다. 디지털 화상관련법은 임계 균열선단열림각도를 도출하기 위하여 균열선단열림변위 및 균열진전길이를 측정하기 위해 사용되었다. 본 연구의 시험 결과에서 입자강화 복합재료의 임계 균열선단열림각도는 균열초기 진전 후 일정한 값을 가진다. 임계 균열선단열림각도는 $50^{\circ}C$에서 $-40^{\circ}C$로 온도의 감소에 따라 증가한다. 이러한 임계 균열선단열림각도는 입자강화 복합재료의 파괴역학 파라미터로 사용될 수 있다.