• Title/Summary/Keyword: cp ndhF-rpl32 IGS

Search Result 2, Processing Time 0.018 seconds

Test of the hybrid origin of Broussonetia × kazinoki (Moraceae) in Korea using molecular markers

  • WON, Hyosig
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.4
    • /
    • pp.282-293
    • /
    • 2019
  • Broussonetia × kazinoki Siebold has long been utilized as a major component in the manufacturing of Korean traditional paper, hanji, and has been suggested as a hybrid species of B. papyrifera and B. monoica. By applying three molecular markers, chloroplast (cp) ndhF-rpl32 IGS, a nuclear ribosomal internal transcribed spacer, and the TOPO6 gene, the hybrid origin of B. × kazinoki is tested. As a result, B. × kazinoki in Korea is demonstrated to be a hybrid of B. monoica × B. papyrifera, most likely formed naturally in Korea. The cp haplotypes detected provided information about the origins and genetic diversity of the maternal lineage B. monoica and paternal lineage B. papyrifera. The two nuclear markers were supplemented to each other, leading to the discovery of introgression in Broussonetia.

Chloroplast genome of the conserved Aster altaicus var. uchiyamae B2015-0044 as genetic barcode

  • Lee, Minjee;Yi, Jae-Sun;Park, Jihye;Lee, Jungho
    • Journal of Species Research
    • /
    • v.10 no.2
    • /
    • pp.154-158
    • /
    • 2021
  • An endemic endangered species, Aster altaicus var. uchiyamae (Danyang aster) B2015-0044, is cultivated at the Shingu Botanical Garden, which serves as the ex situ conservation institution for this species. In this work, we sequenced the chloroplast genome of A. altaicus var. uchiyamae B2015-0044. We found that the chloroplast (cp) genome of B2015-0044 was 152,457 base pairs(bps) in size: 84,247 bps of large single copy regions(LSC), 25,007 bps of inverted repeats(IRs), and 18,196 bps of small single copy regions. The B2015-0044 cp genome contains 79 protein-coding genes (PCGs), 4 RNA genes, 29 tRNA genes, and 3 pseudogenes. These results were identical to a previously reported cp genome (Park et al., 2017), except for two sites in introns and three in intergenic spacer (IGS) regions. For the intronic differences, we found that clpP.i1 had a 1-bp small simple repeat (SSR) (T) and petD.i had a 3-bp SSR (ATT). We found 1-bp SSRs in the IGSs of trnT_ggu~psbD and psbZ~trnG_gcc, C and A, respectively. The IGS of(ndhF)~rpl32 had a SNP. Based on our results, the cp genome of the A. altaicus var. uchiyamae can be classified into two genotypes, [C]1-[A]12-[T]12-[ATT]4-C and [C]2-[A]11-[T]11-[ATT]2-A.