• Title/Summary/Keyword: coverage prediction

Search Result 121, Processing Time 0.024 seconds

On the Study of Perfect Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1151-1160
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity. In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Selection of a Predictive Coverage Growth Function

  • Park, Joong-Yang;Lee, Gye-Min
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.909-916
    • /
    • 2010
  • A trend in software reliability engineering is to take into account the coverage growth behavior during testing. A coverage growth function that represents the coverage growth behavior is an essential factor in software reliability models. When multiple competitive coverage growth functions are available, there is a need for a criterion to select the best coverage growth functions. This paper proposes a selection criterion based on the prediction error. The conditional coverage growth function is introduced for predicting future coverage growth. Then the sum of the squares of the prediction error is defined and used for selecting the best coverage growth function.

A Study on the Maximizing Coverage for Recommender System

  • Lee, Hee-Choon;Lee, Seok-Jun;Park, Ji-Won;Kim, Chul-Seoung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.119-128
    • /
    • 2006
  • The similarity weight, the pearson's correlation coefficient, which is used in the recommender system has a weak point that it cannot predict all of the prediction value. The similarity weight, the vector similarity, has a weak point of the high MAE although the prediction coverage using the vector similarity is higher than that using the pearson's correlation coefficient. The purpose of this study is to suggest how to raise the prediction coverage. Also, the MAE using the suggested method in this study was compared both with the MAE using the pearson's correlation coefficient and with the MAE using the vector similarity, so was the prediction coverage. As a result, it was found that the low of the MAE in the case of using the suggested method was higher than that using the pearson's correlation coefficient. However, it was also shown that it was lower than that using the vector similarity In terms of the prediction coverage, when the suggested method was compared with two similarity weights as I mentioned above, it was found that its prediction coverage was higher than that pearson's correlation coefficient as well as vector similarity.

  • PDF

Estimation of Coverage Growth Functions

  • Park, Joong-Yang;Lee, Gye-Min;Kim, Seo-Yeong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • A recent trend in software reliability engineering accounts for the coverage growth behavior during testing. The coverage growth function (representing the coverage growth behavior) has become an essential component of software reliability models. Application of a coverage growth function requires the estimation of the coverage growth function. This paper considers the problem of estimating the coverage growth function. The existing maximum likelihood method is reviewed and corrected. A method of minimizing the sum of squares of the standardized prediction error is proposed for situations where the maximum likelihood method is not applicable.

On Prediction Intervals for Binomial Data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.943-952
    • /
    • 2013
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

On prediction intervals for binomial data (이항자료에 대한 예측구간)

  • Ryu, Jea-Bok
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Wald, Agresti-Coull, Jeffreys, and Bayes-Laplace methods are commonly used for confidence interval of binomial proportion are applied for prediction intervals. We used coverage probability, mean coverage probability, root mean squared error, and mean expected width for numerical comparisons. From the comparisons, we found that Wald is not proper as for confidence interval and Agresti-Coull is too conservative to differ from confidence interval. However, Jeffrey and Bayes-Laplace are good for prediction interval and Jeffrey is especially desirable as for confidence interval.

Multicast Coverage Prediction in OFDM-Based SFN (OFDM 기반의 SFN 환경에서의 멀티캐스트 커버리지 예측)

  • Jung, Kyung-Goo;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.205-214
    • /
    • 2011
  • In 3rd generation project partnership long term evolution, wireless multicast techniques which send the same data to multiple users under single frequency networks have attracted much attention. In the multicast system, the transmission mode needs to be selected for efficient data transfer while satisfying the multicast coverage requirement. To achieve this, users' channel state information (CSI) should be available at the transmitter. However, it requires too much uplink feedback resource if all the users are allowed to transmit their CSI at all the time. To solve this problem, in this paper, the multicast coverage prediction is suggested. In the proposed algorithm, each user measures its transition probabilities between the success and the fail state of the decoding. Then, it periodically transmits its CSI to the basestation. Using these feedbacks, the basestation can predict the multicast coverage. From the simulation results, we demonstrate that the proposed scheme can predict the multicast system coverage.

A Study on the Improvement of Prediction Accuracy of Collaborative Recommender System under the Effect of Similarity Weight Threshold (협력적 추천시스템에서 유사도 가중치의 임계치 설정에 따른 선호도 예측 정확도 향상에 관한 연구)

  • Lee, Seok-Jun
    • Korean Business Review
    • /
    • v.20 no.1
    • /
    • pp.145-168
    • /
    • 2007
  • Recommender system helps customers to find easily items and helps the e-biz companies to set easily their target customer by automated recommending process. Recommender systems are being adopted by several e-biz companies and from these systems, both of customers and companies take some benefits. This study sets several thresholds to the similarity weight, which indicates a degree of similarity of two customers' preference, to improve the performance of prediction accuracy. According to the threshold, the accuracy of prediction is being improved but some threshold setting shows the reduction of the prediction rate, which is the coverage. This coverage reduction has male effect on the prediction accuracy of customers, so more study on the prediction accuracy of recommender system and to maximize the coverage are needed.

  • PDF

Optimizing Simulation of Wireless Networks Location for WiBRO Based on Wave Prediction Model (전파 예측 모델에 의한 와이브로 무선망 위치 선정의 최적화 시뮬레이션)

  • Roh, Su-Sung;Lee, Chil-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.587-596
    • /
    • 2008
  • For Wireless internet service in Metropolitan area, optimum location selection for base station and cell planning are critical process in determining service coverage by accurate prediction of Wave Propagation Characteristics. Due to different kinds of characteristics in service area such as lay of land, natural feature and material, height and width of artificially made building, it has a great impact on the transmission and distance recovery of wireless network service. Therefore, these facts may cause substantial barriers in predicting & analyzing the expected level of service quality and providing it to subscribers. In this thesis, we have simulated the process to improve quality and coverage of the service by adjusting the location of Base station and the antenna angle that influence the service after the basic location of base station is selected according to the wave prediction model. Based on this simulations test, we have demonstrated the results in which subscribers would get higher quality of wireless internet service along with bigger coverage and the improved quality in the same service coverage area through optimization process of base station.