• Title/Summary/Keyword: cover-data

Search Result 1,990, Processing Time 0.029 seconds

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008) (최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea (MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출)

  • Hong, U-Yong;Sin, Hyeong-Jin;Kim, Seong-Jun
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

A Theoretical Study on Land Cover Classification - Focused on Natural Environment Management - (토지피복분류에 관한 이론적 연구 - 자연환경관리를 중심으로 -)

  • Jeon, Seong-Woo;Kim, Kwi-Gon;Park, Chong-Hwa;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 1999
  • Land cover classification is an essential basic information in natural environment management; however, land cover classification studies in Korea have not yet been proceeded to a sufficient level. At the present, only a limited number of the precedent studies that only cover definite city area has been conducted. Furthermore, there is almost no research conducted on the land cover classification schemes that could accurately classify the Korea's land cover conditions. This study primarily focuses on the land cover classification scheme which carries the most urgent priority in order to classify and to map out the Korean land cover conditions. In order to develop the most suitable land cover classification scheme, many foreign land cover classification cases and projects that are being carried out were reviewed in depth. The land cover classification scheme this study proposes comprises 3 levels : The first level consists of 7 different classes; the second level consists of 22 different classes; and the third level is made up of 50 classes. The land cover classification map will serve many important roles in natural environment management, such as the conjecture of natural habitats and estimation of oxygen production or carbon dioxide absorption capability of a forest. In water pollution modelling, the land cover classification data can be used to estimate and locate non-point sources of water pollution. If applied to a watershed, modelling it will allow to estimate the total amount of pollution from non-point sources of pollution in the water shed. The land cover classification data will also be good as a barometer data that determines defusion of air pollutants in air pollution modelling.

  • PDF

A Comparison of the Land Cover Data Sets over Asian Region: USGS, IGBP, and UMd (아시아 지역 지면피복자료 비교 연구: USGS, IGBP, 그리고 UMd)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.159-169
    • /
    • 2007
  • A comparison of the three land cover data sets (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, and University of Maryland: UMd), derived from 1992-1993 Advanced Very High Resolution Radiometer(AVHRR) data sets, was performed over the Asian continent. Preprocesses such as the unification of map projection and land cover definition, were applied for the comparison of the three different land cover data sets. Overall, the agreement among the three land cover data sets was relatively high for the land covers which have a distinct phenology, such as urban, open shrubland, mixed forest, and bare ground (>45%). The ratios of triple agreement (TA), couple agreement (CA) and total disagreement (TD) among the three land cover data sets are 30.99%, 57.89% and 8.91%, respectively. The agreement ratio between USGS and IGBP is much greater (about 80%) than that (about 32%) between USGS and UMd (or IGBP and UMd). The main reasons for the relatively low agreement among the three land cover data sets are differences in 1) the number of land cover categories, 2) the basic input data sets used for the classification, 3) classification (or clustering) methodologies, and 4) level of preprocessing. The number of categories for the USGS, IGBP and UMd are 24, 17 and 14, respectively. USGS and IGBP used only the 12 monthly normalized difference vegetation index (NDVI), whereas UMd used the 12 monthly NDVI and other 29 auxiliary data derived from AVHRR 5 channels. USGS and IGBP used unsupervised clustering method, whereas UMd used the supervised technique, decision tree using the ground truth data derived from the high resolution Landsat data. The insufficient preprocessing in USGS and IGBP compared to the UMd resulted in the spatial discontinuity and misclassification.

Classification of Land Cover over the Korean Peninsula using MODIS Data (MODIS 자료를 이용한 한반도 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

Improvement of Land Cover / Land Use Classification by Combination of Optical and Microwave Remote Sensing Data

  • Duong, Nguyen Dinh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.426-428
    • /
    • 2003
  • Optical and microwave remote sensing data have been widely used in land cover and land use classification. Thanks to the spectral absorption characteristics of ground object in visible and near infrared region, optical data enables to extract different land cover types according to their material composition like water body, vegetation cover or bare land. On the other hand, microwave sensor receives backscatter radiance which contains information on surface roughness, object density and their 3-D structure that are very important complementary information to interpret land use and land cover. Separate use of these data have brought many successful results in practice. However, the accuracy of the land use / land cover established by this methodology still has some problems. One of the way to improve accuracy of the land use / land cover classification is just combination of both optical and microwave data in analysis. In this paper for the research, the author used LANDSAT TM scene 127/45 acquired on October 21, 1992, JERS-1 SAR scene 119/265 acquired on October 27, 1992 and aerial photographs taken on October 21, 1992. The study area has been selected in Hanoi City and surrounding area, Vietnam. This is a flat agricultural area with various land use types as water rice, secondary crops like maize, cassava, vegetables cultivation as cucumber, tomato etc. mixed with human settlement and some manufacture facilities as brick and ceramic factories. The use of only optical or microwave data could result in misclassification among some land use features as settlement and vegetables cultivation using frame stages. By combination of multitemporal JERS-1 SAR and TM data these errors have been eliminated so that accuracy of the final land use / land cover map has been improved. The paper describes a methodology for data combination and presents results achieved by the proposed approach.

  • PDF

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Land cover classification based on the phonology of Korea using NOAA-AVHRR

  • Kim, Won-Joo;Nam, Ki-Deock;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.439-442
    • /
    • 1999
  • It is important to analyze the seasonal change profiles of land cover type in large scale for establishing preservation strategy and environmental monitoring. Because the NOAA-AVHRR data sets provide global data with high temporal resolution, it is suitable for the land cover classification of the large area. The objectives of this study were to classify land cover of Korea, to investigate the phenological profiles of land cover. The NOAA-AVHRR data from Jan. 1998 to Dec. 1998 were received by Korea Ocean Research & Development Institute(KORDI) and were used for this study. The NDVI data were produced from this data. And monthly maximum value composite data were made for reducing cloud effect and temporal classification. And the data were classified using the method of supervised classification. To label the land cover classes, they were classified again using generalized vegetation map and Landsat-TM classified image. And the profiles of each class was analyzed according to each month. Results of this study can be summarized as follows. First, it was verified that the use of vegetation map and TM classified map was available to obtain the temporal class labeling with NOAA-AVHRR. Second, phenological characteristics of plant communities of Korea using NOAA-AVHRR was identified. Third, NDVI of North Korea is lower on Summer than that of South Korea. And finally, Forest cover is higher than another cover types. Broadleaf forest is highest on may. Outline of covertype profiles was investigated.

  • PDF