• Title/Summary/Keyword: coupling weak-strong forms

Search Result 1, Processing Time 0.017 seconds

Copper(II) Coordination Polymers Assembled from 2-[(Pyridin-3-ylmethyl)amino]ethanol: Structure and Magnetism

  • Han, Jeong-Hyeong;Shin, Jong-Won;Min, Kil-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1113-1117
    • /
    • 2009
  • The one-dimensional coordination polymers, $[Cu^{II}(L)(NO_3)_2]_n$ (1) and {$[Cu^{II}(L)(NO_3)]{\cdot}2H_2O}_{2n} (2), were synthesized from $Cu(NO_3)_2{\cdot}3H_2O$ and 2-[(pyridin-3-ylmethyl)amino]ethanol (L, PMAE) in methanol by controlling the molar ratio of copper(II) salt. Copper(II) ion in 1 has one pyridine group of PMAE whose an aminoethanol group coordinates adjacent copper(II) ion. As the pyridine group is bonded to neighboring copper(II) ion, 1 becomes a one-dimensional chain. Contrary to 1, the structure of 2 shows that the oxygen atom of ethoxide group is bridged between two copper(II) ions, which forms a dinuclear complex. Additionally, the pyridine group of PMAE included one dinuclear unit is coordinated to the other dimeric one each other, which leads to a one-dimensional polymer. Due to the structural differences, 1 exhibits weak antiferromagnetic interaction, while 2 shows strong antiferromagnetic interaction. Due to direct spin exchange via oxygen of PMAE 2 has a much strong spin coupling than 1.