• Title/Summary/Keyword: coupling process

Search Result 741, Processing Time 0.038 seconds

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field

  • Ji, Youjun;Li, Xiaoyu
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.677-686
    • /
    • 2018
  • Aimed at serious casing damage problem during the process of oilfield development by injecting water, based on seepage mechanics, fluid mechanics and the theory of rock mechanics, the multi-physics coupling theory was also taken into account, the mathematical model for production of petroleum with water flooding was established, and the method to solve the coupling model was presented by combination of Abaqus and Eclipse software. The Q9G3 block in Jibei oilfield was taken for instance, the well log data and geological survey data were employed to build the numerical model of Q9G3 block, the method established above was applied to simulate the evolution of seepage and stress. The production data was imported into the model to conduct the history match work of the model, and the fitting accuracy of the model was quite good. The main mechanism of casing damage of the block was analyzed, and some wells with probable casing damage problem were pointed out, the displacement of the well wall matched very well with testing data of the filed. Finally, according to the simulation results, some useful measures for preventing casing damage in Jibei oilfield was proposed.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Hydro-mechanical coupling algorithm of reinforced concrete lining in hydraulic pressure tunnel using cohesive elements

  • Li Zhou;Kai Su;Ding-wei Liu;Yin-quan Li;Hong-ze Zhu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.139-156
    • /
    • 2023
  • The reinforced concrete lining in the hydraulic pressure tunnel tends to crack during the water-filling process. The lining will be detached from the surrounding rock due to the inner water exosmosis along concrete cracks. From the previous research achievements, the cohesive element is widely adopted to simulate the concrete crack but rarely adopted to simulate the lining-rock interface. In this study, the zero-thickness cohesive element with hydro-mechanical coupling property is not only employed to simulate the traditional concrete crack, but also innovatively introduced to simulate the lining-rock interface. Combined with the indirect-coupled method, the hydro-mechanical coupling algorithm of the reinforced concrete lining in hydraulic pressure tunnels is proposed and implemented in the finite element code ABAQUS. The calculated results reveal the cracking mechanism of the reinforced concrete lining, and match well with the observed engineering phenomenon.

COUPLED ANALYSIS OF INJECTION MOLDING AND FILM FORMING FOR IDENTIFYING FILM DEFORMATION IN IMD PROCESS (IMD 공정 중 필름 변형 특성 파악을 위한 사출 및 필름성형 간 연계해석)

  • Yoon, J.H.;Hur, N.;Bae, A.H.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In various manufacturing industries, an in-mold decoration (IMD) process for plastic objects is widely utilized because a film forming and an injection molding processes run simultaneously. In the present study, the deformation of polymer film and filling of resin in the IMD process were numerically investigated to evaluate the quality of the plastic object formed by the IMD process, which consists of thermoforming and injection molding processes. To obtain the initial shape of the polymer film during the injection molding process, the deformation of the polymer film in the thermoforming process was pre-formed using the vacuum conditions to attach the film to a cavity. Since the properties and deformation of polymer film are greatly affected by the behavior of polymer resin being injected into a mold cavity, numerical simulations for the injection molding and film forming were performed with one-way coupling method. The results showed that the injected resin could lead to the tearing of the polymer film in local regions near the corners. In order to verify the proposed numerical methodology, the numerical results of the deformation patterns printed on the initial polymer film were compared with the experimental data. The proposed methodology to couple film forming analysis with injection molding analysis can be used to predict the deformation of film in IMD process.

Design and Implementation of Tag Coupling-based Boolean Query Matching System for Ranked Search Result (태그결합을 이용한 불리언 검색에서 순위화된 검색결과를 제공하기 위한 시스템 설계 및 구현)

  • Kim, Yong;Joo, Won-Kyun
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.4
    • /
    • pp.101-121
    • /
    • 2012
  • Since IR systems which adopt only Boolean IR model can not provide ranked search result, users have to conduct time-consuming checking process for huge result sets one by one. This study proposes a method to provide search results ranked by using coupling information between tags instead of index weight information in Boolean IR model. Because document queries are used instead of general user queries in the proposed method, key tags used as queries in a relevant document are extracted. A variety of groups of Boolean queries based on tag couplings are created in the process of extracting queries. Ranked search result can be extracted through the process of matching conducted with differential information among the query groups and tag significance information. To prove the usability of the proposed method, the experiment was conducted to find research trend analysis information on selected research information. Aslo, the service based on the proposed methods was provided to get user feedback for a year. The result showed high user satisfaction.

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.217-231
    • /
    • 2006
  • The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.

System architecture and simulation strategy for dynamic process simulation (화학공정 동적모사기 개발에 있어서 시스템구조 및 전략)

  • 이강주;한경택;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.315-320
    • /
    • 1992
  • This paper presents the simulation architecture and strategy for dynamic simulation of chemical process and describes key features of developed dynamic simulation system, MOSA(Multi-Objective Simulation Architecture). A plant structure may be partioned into several strong coupling units, called cluster. If this cluster is solved simultaneously, it is possible to simulate whole plant without introducing convergence problem of tear streams. In this study, a flexible modular approach based on clusters was proposed as a promising architecture for dynamic chemical process simulator.

  • PDF

Analysis of Induction Heating by Using FEM (유한요소법을 이용한 유도가열 해석)

  • 윤진오;양영수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF