• Title/Summary/Keyword: coupling model

Search Result 1,411, Processing Time 0.026 seconds

Interlayer Coupling of CoFe/Cu/NiFe Trilayer Films

  • Baek, Jong-Sung;Lim, Woo-Woung;Lee, Soo-Hyung;Kim, Mee-Yang;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.139-142
    • /
    • 2000
  • The interlayer coupling between adjacent ferromagnetic layers was examined for CoFe/Cu/NiFe trilayer systems. A series of films of CoFe (20 nm)/Cu($t_{cu}$)/NiFe (20 nm) trilayers with Cu spacer thickness, $t_{cu}$, in the range of 1~10 m was deposited on Si(100) wafers at room temperature by DC magnetron sputtering. In order to understand the dependence of the magnetic interaction between ferromagnetic $Co_{90}Fe_{10}$ (wt.%) and $Ni_{81}Fe_{19}$ (wt.%) layers separated by a nonmagnetic Cu spacer on the Cu layer thickness, we investigated the derivative ferromagnetic resonance (FMR) spectra. The FMR results were analyzed using the model of Layadi and Art-man for interlayer interaction. The interlayer coupling constant decreases in an oscillatory manner as the Cu spacer thickness increases up to 10 nm and approaches zero above 10 nm. The interlayer coupling constant is positive for all samples. Hence, it seems that the exchange coupling between adjacent CoFe and NiFe layers separated by a Cu layer is ferromagnetic.

  • PDF

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Analysis of Radio Interference through Ducting for 2.5 GHz WiMAX Service

  • Son, Ho-Kyung;Kim, Jong-Ho;Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • Radio interference has been occurring in mobile communication services on the southern seashore in Korea. Monitoring the radio interference signal revealed that the main reason for the radio interference was a radio ducting signal coming from the seaside of Japan. In this paper, we have analyzed the effect of interference on WiMAX service using a 2.5 GHz frequency band between Korea and Japan. We focus on the interference scenario from base station to base station and we use the Minimum Coupling Loss (MCL) method for interference analysis and the Advanced Propagation Model (APM) for calculating the propagation loss in ducts. The propagation model is also compared with experimental measurement data. We confirm that the interfering signal strength depends on the antenna height and this result can be applied to deployment planning for each system with an interference impact acceptable to both parties.

Simulation of turbulent flow of turbine passage with uniform rotating velocity of guide vane

  • Wang, Wen-Quan;Yan, Yan
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.421-440
    • /
    • 2018
  • In this study, a computational method for wall shear stress combined with an implicit direct-forcing immersed boundary method is presented. Near the immersed boundaries, the sub-grid stress is determined by a wall model in which the wall shear stress is directly calculated from the Lagrangian force on the immersed boundary. A coupling mathematical model of the transition process for a model Francis turbine comprising turbulent flow and rotating rigid guide vanes is established. The spatiotemporal distributions of pressure, velocity, vorticity and turbulent quantity are gained with the transient process; the drag and lift coefficients as well as other forces (moments) are also obtained as functions of the attack angle. At the same time, analysis is conducted of the characteristics of pressure pulsation, velocity stripes and vortex structure at some key parts of flowing passage. The coupling relations among the turbulent flow, the dynamical force (moment) response of blade and the rotating of guide vane are also obtained.

Stability of Tip in Adhesion Process on Atomic Force Microscopy Studied by Coupling Computational Model

  • Senda, Yasuhiro;Blomqvist, Janne;Nieminen, Risto M.
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.6-10
    • /
    • 2017
  • We investigated the stability of ionic configurations of the tip of the cantilever in non-contact AFM.; For this, we used a computational model that couples the ionic motion of the MgO surface and the oscillating cantilever. The motion of ions was connected to the oscillating cantilever using a coupling method that had been recently developed. The adhesive process on the ionic MgO surface leads to energy dissipation of the cantilever. It is shown that limited types of ionic configurations of the tip are stable during the adhesive process. Based on the present computational model, we discuss the adhesive mechanism leading to energy dissipation.

Coupling effects of vection and compensatory head sway on simulator sickness and gender difference

  • Yoo, Young-Hak;Lee, Gene C.H.
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.351-356
    • /
    • 1997
  • A global model of simulator sickness is outlined that suggests the sequence of events leading to the development of simulator aftereffects. The model attempts to link coupling effects of illusory self-motion(vection) and compensatory head sway to the origin of simulator sickness. A pilot study was conducted in support of a rescarch program that will investigate the proposed model. Seven males and four females participated in a 5-min scssion in a fixed-base automobile simulator. Due to restricted sample size, descriptive statistics are presented for measures of simulator sickness, lateral sway velocity (Y-velocity), driving performance, control inpuls, and vection ratings. Although potential trends are discussed, no statistical conclusions can be drawn. Measurement issures for te next phase of reasearch mclude increasing the sensitivity of vection ratings, and examination of the timecourse got development of compensatory sway.

  • PDF

Validity of the Two-Mode Coupling Model in the Context of Cascaded Long-Period Fiber Gratings (캐스케이드된 장주기 광섬유격자 해석에서의 두모드 결합 모델의 유효성)

  • Park, Dong-Wook;Hwnag, Joon-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.7-14
    • /
    • 2000
  • This paper examines the constraints imposed in the usage of the conventional two-mode coupling model in the context of a cascaded long-period fiber grating and presents a set of approximate conditions that must be satisfied for the model to be applicable in the analysis of such a structure. Numerical examples based on the guidelines are provided for a set of realistic grating parameters and their practical implications on the allowed grating period variations for a given bandwidth are discussed.

  • PDF

Application of KPI based on Coupling Model Design in Medium and Small Manufacturers (중소 제조업의 융합모형 설계에 따른 핵심성과지표 적용 사례)

  • Park, Kook-Je;Lee, Woon-Seek;Hwang, Gun-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2008
  • It is important to manage quality and safety of a product for coping with fast-paced world effectively. This paper demonstrates an integrated model between ISO 9001 Quality Management System and Product Safety Management System. And the paper presents a method which decides key performance indicators (KPI) to be concentrated on the effectiveness of system operation. A case study shows an process for industry to implement the developed methodology.

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

Nonlinear Coupling Factor in Dynamic Model of Flexible Manipulator (유연 매니퓰레이터 동역학 모델링의 비선형 커플링 요소)

  • Lee Jin-Ho;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.404-408
    • /
    • 2005
  • Having flexibility in a manipulator will degrade trajectory tracking control and manipulator tip positioning. In practice, however, constraints imposed by various operating requirements, will render the presence of such flexibility unavoidable. The dynamic analysis of the flexible manipulator is essential in designing proper control systems. A flexible manipulator consists of infinite number of elastic modes and the modes are usually coupled to each other. For the practicality, however, it is usually assumed that the flexible system consists of finite number of elastic modes and the modes are decoupled. These assumptions result in a linear and decoupled mathematical model of the flexible manipulator and simplify the analysis of the dynamic behavior and the design of the control system. The decoupling and linearization of the flexible link, however, has been assumed without in depth analysis. This paper focuses on the analysis of the significance of the non-linear coupling factors.

  • PDF