• Title/Summary/Keyword: coupling model

Search Result 1,411, Processing Time 0.033 seconds

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

Drug Release from Thermo-Responsive Self-assembled Polymeric Micelles Composed of Cholic Acid and Poly(N-isopropylacrylamide)

  • Kim, In-Sook;Jeong, Young-Il;Lee, Yun-Ho;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • Cholic acid, conjugated with amine-terminated poly(W-isopropylacrylamide) (abbreviated as CA/ATPNIPAAm), was synthesized by a N, N'-dicyclohexyl carbodiimide (DCC)-mediated coupling reaction. Self-assembled CA/ATPNIPAAm micelles were prepared by a diafiltration method in aqueous media. The CA/ATPNIPAAm micelles exhibited a lower critical solution temperature (LCST) at $31.5^{\circ}C$. Micelle sizes measured by photon correlation spectroscopy (PCS) were approximately 31.6 $\times$$\times$ 5.8 nm. The CA/ATPNIPAAm micelles were spherical and their thermal size transition was observed by transmission electron microscope (TEM). A fluorescence probe technique was used for determining the micelle formation behavior of CA/ATPNIPAAm in aqueous solutions using Pyrene as a hydrophobic Probe. The critical micelle concentration (CMC) was evaluated as $8.9{\times}0^{-2}$ g/L. A drug release study was performed using indomethacin (IN) as a hydrophobic model drug. The release kinetics of IN from the CA/ATPNIPAAm micelles revealed a thermo-sensitivity by the unique character of poly(N-isopropylacrylamide) i.e. the release rate was higher at $25^{\circ}C$ than at $37^{\circ}C$.

  • PDF

Disturbance Observer-Based Hybrid Control of Displacement and Force in a Medical Tele-Analyzer

  • Suebsomran Anan;Parnichkun Manukid
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.70-78
    • /
    • 2005
  • This paper presents hybrid control of displacement and force in a Medical Tele-Analyzer by disturbance observer-based controller which is robust to internal and external disturbances; model uncertainty, load, and friction for instances. The developed Medical Tele-Analyzer consists of 2 subsystems; doctor-side subsystem and patient-side subsystem. In the doctor side subsystem, an array of displacement sensor is equipped to detect movement of doctor's hand and fingers. The detected information is transmitted to the patient side to be used in medical analysis. On the other hand, the patient-side subsystem consists of an array of displacement actuators, which is used to follow displacement of doctor's hand and fingers. An array of force sensors is used to detect forces between patient and the equipment. Since displacement control in patient side is coupled with force control in doctor side and vice-versa, design of the controller has to take into account this coupling. Not only using in medical tele-analysis, the proposed system can also be used in any tele-displacement-force controls of industrial processes.

Error Analysis of a Sensorless Position Estimation Considering Noise for Switched Reluctance Motor (노이즈 성분을 고려한 SRM 센서리스 위치 추정의 오차 해석)

  • 김갑동;최재동;이학주;안재황;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.74-81
    • /
    • 2001
  • The sensorless scheme for Switched Reluctance Motor(SRM) drives must have the robustness and reliability because the noise and error are sensitive. These elements make electrically noisy environments due to the proximity of high current power circuits with small signal electronic circuits when SRM drives. Also, due to the leakage inductances and finite coupling capacitances, these can cause the noise on any low voltage current and voltage measurement circuit. The position estimate error occurs because the current and voltage including the noise are sued as the inputs of sensorless algorithm. In this paper the high robustness and resistance of input noise re described. The fuzzy logic based rotor estimation algorithm and the observer model are used to reduce the tolerance of input data.

  • PDF

Channel Modeling for Multi-Level Cell Memory (멀티 레벨 셀 메모리의 채널 모델링)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.880-886
    • /
    • 2009
  • Recently, the memory is used in many electronic devices, thus, the many researchers make a study of the memory. To increase a storage capacity per memory block, the researchers study for reducing the fabrication process of memory and multi-level cell memory which is storing more than 2-bits in a cell. However, the multi-level cell memory has low bit-error rates by various noises. In this paper, we study the noise of multi-level cell memory, and we propose the channel model of multi-level cell memory.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

A BEM/RANS interactive method for predicting contra-rotating propeller performance

  • Su, Yiran;Kinnas, Spyros A.
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.329-344
    • /
    • 2017
  • This paper introduces a BEM/RANS interactive scheme to predict the contra-rotating propeller (CRP) performance. In this scheme, the forward propeller and the aft propeller are handled by two separate BEM models while the interactions between them are achieved by coupling them with a RANS solver. By using the body force field and mass source field to represent the propeller in the RANS model, the number of RANS cells and the number of required RANS iterations reduce significantly. The method provides an efficient way to predict the effective wake, the steady/unsteady propeller forces, etc. The BEM/RANS interactive scheme is first applied to a CRP in both an axisymmetric manner and a non-axisymmetric manner. Results are shown in good agreement with the experimental data in moderate to high advance ratios. It is proved that the difference between the axisymmetric scheme and the non-axisymmetric scheme mainly comes from the non-axisymmetric bodies. It is also found that the error is larger at lower advance ratios. Possible explanations are given. Finally, some additional cases are tested which justifies that the non-axisymmetric BEM/RANS scheme is able to handle a podded CRP working at given inclination angles.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Micro-macroscopic analysis on the directional casting of a metal alloy (합금의 방향성 주조에 대한 미시적-거시적 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.