• Title/Summary/Keyword: coupling correlation

Search Result 129, Processing Time 0.027 seconds

Optical Arithmetic Technique Using Optical Phase Conjugate Wave (위상 공액파를 이용한 광학적 연산 방식)

  • 엄순영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.95-101
    • /
    • 1990
  • Parallel optical arithmetic techniques have been developed using the correlation property of optical phase conjugate wave generated by degenerated four wave-mixing. In this paper, conventional rectangular-type coded pattern used for optical logic system is replaced by circular one for effective beam coupling in a photorefractive $BaTiO_3$ material. By adequately adjusting the distance between circular-type pixels of the input pattern and grouping the correlated output, optical binary half addition/subtraction, binary multiplication and, matrix-matrix computation are demonstrated.

  • PDF

Investigation of Vibration Characteristics using Experimental Statistical Energy Analysis(ESEA) (시험적인 통계적 에너지 기법(ESEA)을 적용한 진동 전달 특성 연구)

  • 이화수;우관제;김종년;이태욱
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Vibrational characteristics of coupled beam & plate system are considered on simple system, which consists of plates(2-subsystem) and beams(4-subsystem), using experimental statistical energy analysis(ESEA). First, damping and coupling loss factors of the system are determined by power injection method (PIM). Then, energy distribution of all the subsystem is estimated from the power balance equation. Finally, these quantities are compared with measured energy. The correlation of measured and estimated results for the sample problem is reasonably good.

  • PDF

Climate Prediction by a Hybrid Method with Emphasizing Future Precipitation Change of East Asia

  • Lim, Yae-Ji;Jo, Seong-Il;Lee, Jae-Yong;Oh, Hee-Seok;Kang, Hyun-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1143-1152
    • /
    • 2009
  • A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and observed climate values. This paper focuses on predictions of future climate on a regional scale which are of potential economic values. The proposed method is obtained by coupling the classical CCA with empirical orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate responses, so that extreme events as well as a general feature such as long tails and unimodality can be revealed through the distribution. Results from real data examples demonstrate the promising empirical properties of the proposed approaches.

Transform domain algorithm for Improving Convergence Speed of Broadband Active Noise Control (광대역 능동소음제어의 수렴속도개선을 위한 변환영역 알고리듬)

  • Ahn, Doo-Soo;Kim, Jong-Boo;Lee, Tae-Pyo;Yim, Kook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.644-646
    • /
    • 1998
  • The main drawback of filtered-X LMS(FXLMS) algorithm for the ANC of broadband noises is its low convergence speed when the filtered reference signals are strongly correlated, producing a large eigenvalue spread in correlation matrix. This correlation can be caused either by autocorrelation of the signals of the reference sensors, or by coupling between the error path which introduces intercorrelation in the filtered reference signals. In this paper, we introduce a transform domain FXLMS(TD-FXLMS) algorithm that has a high convergence speed by orthogonal transform's decorrelation properties.

  • PDF

Effects of Working Fluid Filling Ratio and Heat flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon (루프 써모사이폰에서 작동유체 충액률과 열유속이 열전달계수의 상관식에 미치는 영향)

  • 장기창;이기우;이영수;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.462-473
    • /
    • 2001
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying th loop thermosyphon to heat exchanger design. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in th range of 13~78kW/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\p$\pm$5% and\;\pm20$% respectively.

  • PDF

MIMO Channel Analysis Method using Ray-Tracing Propagation Model (전파예측모델을 이용한 MIMO 채널 분석 방법)

  • 오상훈;명로훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.759-764
    • /
    • 2004
  • This paper proposes a method that estimates MIMO channel characteristics analytically using a 3D ray tracing propagation model. We calculate the discrete spatial correlation between sub-channels by considering phase differences of paths, and using this, estimate the mean capacity upper bound of MIMO channel by Jensen's inequality. This analysis model is a deterministic model that do not approach stochastically through measurement nor approach statistically through Monte-Carlo simulations, so this model has high efficiency for time and cost. And based on the electromagnetic theory, this model may analyze quantitatively the parameters which can affect the channel capacity - antenna pattern, polarization mutual coupling, antenna structure and etc. This model may be used for the development of an optimal antenna structure for MIMO systems.

CORE AND SUB-CHANNEL EVALUATION OF A THERMAL SCWR

  • Liu, Xiao-Jing;Cheng, Xu
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.677-690
    • /
    • 2009
  • A previous study demonstrated that the two-row fuel assembly has much more favorable neutron-physical and thermal-hydraulic behavior than the conventional one-row fuel assemblies. Based on the newly developed two-row fuel assembly, an SCWR core is proposed and analyzed. The performance of the proposed core is investigated with 3-D coupled neutron-physical and thermal-hydraulic calculations. During the coupling procedure, the thermal-hydraulic behavior is analyzed using a sub-channel analysis code and the neutron-physical performance is computed with a 3-D diffusion code. This paper presents the main results achieved thus far related to the distribution of some neutronic and thermal-hydraulic parameters. It shows that with adjustment of the coolant and moderator mass flow in different assemblies, promising neutron-physical and thermal-hydraulic behavior of the SCWR core is achieved. A sensitivity study of the heat transfer correlation is also performed. Since the pin power in fuel assemblies can be non-uniform, a sub-channel analysis is necessary in order to investigate the detailed distribution of thermal-hydraulic parameters in the hottest fuel assembly. The sub-channel analysis is performed based on the bundle averaged parameters obtained with the core analysis. With the sub-channel analysis approach, more precise evaluation of the hot channel factor and maximum cladding surface temperature can be achieved. The difference in the results obtained with both the sub-channel analysis and the fuel assembly homogenized method confirms the importance of the sub-channel analysis.

Coupling Behavior of Pressure and Heat Release Oscillations by Swirl Injection in Hybrid Rocket (스월에 의한 하이브리드 로켓의 연소압력과 연소반응 진동의 결합 거동)

  • Kim, Jungeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.567-574
    • /
    • 2018
  • Swirl injection induces not only the increase in fuel regression rate but also the reduction of combustion pressure oscillation. This acts, in turn, to stabilize combustion process. Thus, this study primarily focuses on the change in flow structure in the main chamber by swirl injection. Then examining the change in flow structure was done to understand the physical process for stabilizing combustion. In the results, the application of swirl injection could suppress the generation of p' and q' in 500Hz band and could shift the phase difference and cross correlation. Further investigations with combustion visualization also show that the development of helical motion near surface region affects the small-sized vortex generation and shedding yielding combustion stabilization eventually.

Acoustic Study of light weight insulation system on Dash using SEA technique (SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구)

  • Lim, Hyo-Suk;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF