• Title/Summary/Keyword: coupling behavior

Search Result 550, Processing Time 0.031 seconds

A hybrid method for predicting the dynamic response of free-span submarine pipelines

  • Li, Tongtong;Duan, Menglan;Liang, Wei;An, Chen
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.363-375
    • /
    • 2016
  • Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan's wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.

Stress-Strain Behavior and Electrical Resistive of Conductive Silver Particle/Silicone Composite Pastes with Surface Modification (표면처리에 따른 도전성 은입자/실리콘 복합 페이스트의 응력-변형율 거동 및 전기비저항 특성)

  • 이건웅;방대석;박민;조동환
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.61-67
    • /
    • 2004
  • This paper reports the electrical conductivity and the stress-strain behavior of silver particle-filled silicone composite pastes for electromagnetic interference (EMI) shielding gasket materials. The percolation threshold (critical concentration) of the composite paste obtained by incorporating irregular sphere-shaped silver particles and room temperature vulcanizing (RTV) silicone resin was determined from the electrical conductivity result. At about 28 vol% Beading of untreated silver particles, the percolation phenomenon occurred and at this critical concentration, the volumetric resistivity, the tensile strength, and the elongation of the pastes were investigated. This work also suggests that the stress-strain characteristics of a composite paste filled with metal particles above the percolation threshold may be effectively improved by properly selecting a coupling agent.

Gas Transport Behavior of Polydopamine-Coated Composite Membranes (폴리도파민/미세다공성 복합막의 기체투과특성)

  • Kim, Hyo Won;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

Analysis and Test of Hydrodynamic Ram in Welded Metallic Water Tanks

  • Kim, Jong Heon;Kim, Chun-Gon;Jun, Seungmoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Analysis and test of hydrodynamic ram in welded metallic tanks containing water were performed to investigate the phenomena and to understand the effects on the resulting structural behavior. Arbitrary Lagrange-Euler coupling method was used for the analysis of the fluid-structure interaction occurring in the hydrodynamic ram, where the projectile, tank, and water are exchanging load, momentum, and energy during the traveling of the projectile through the water of the tank. For a better representation of the physical phenomena, modeling of the welded edges is added to the analysis to simulate the earlier weld line fracture and its influence on the resulting hydrodynamic ram behavior. Corresponding hydrodynamic tests were performed in a modified gas gun facility, and the following panel-based examinations of various parameters, such as displacement, velocity, stress, and energy, as well as hydrodynamic ram pressure show that the analysis and test are well correlated, and thus the results of the study reasonably explain the characteristics of the hydrodynamic ram. The methodology and procedures of the present study are applicable to the hydrodynamic ram assessment of airframe survivability design concepts.

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

Drug Release from the Enzyme-Degradable and pH-Sensitive Hydrogel Composed of Glycidyl Methacrylate Dextran and Poly{acrylic acid)

  • Kim In-Sook;Oh In-Joon
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.983-987
    • /
    • 2005
  • Hydrogels composed of glycidyl methacrylate dextran (GMD) and poly(acrylic acid, PM) were prepared by UV irradiation method for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacrylate to dextran in the presence of 4-(N,N-dimethylamino)pyridine. GMD was photo-polymerized by ammonium peroxydisulfate as initiating system in phosphate­buffered solution (0.1 M, pH 7.4). And then, acrylic acid monomer was added and subsequently heat-polymerized by 2,2'-azobisisobutyronitrile as an initiator. The hydrogels exhibited high swelling ratio (about 20) at $37^{\circ}C$, and showed a pH-dependent swelling behavior. In addition, the swelling ratio of the hydrogel was remarkably enhanced to about 45 times in the presence of dextranase at pH 7.4. The swelling-deswelling behavior proceeded reversibly for the GMD/PM hydrogels between pH 2 and pH 7.4. Release of 5-aminosalicylic acid from the GMD/PAA hydrogels was evaluated in simulated gastrointestinal pH fluids in the absence or presence of dextranase. We concluded that the hydrogels prepared could be used as a dual-sensitive drug carrier for sequential release in gastrointestinal tract.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

Influence of Moving Masses on Dynamic Behavior of Cantilever Pipe Subjected to Uniformly Distributed Tangential Follower Forces (이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향)

  • 윤한익;김봉균;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.430-437
    • /
    • 2003
  • A conveying fluid cantilever pipe subjected to a uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses, and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a cantilever pipe without moving masses, and three constant velocities and three constant distances between two moving masses are also chosen. When the moving masses exist on pipe, as the velocity of the moving mass and the distributed tangential follower force Increases. the deflection of cantilever pipe conveying fluid is decreased, respectively Increasing of the velocity of fluid flow makes the amplitude of a cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip- displacement of a pipe is influenced by the coupling effect between interval and velocity of moving mass and the potential energy change of a cantilever pipe. Increasing of the moving mass make the frequency of the cantilever pipe conveying fluid decrease.

Static and dynamic behavior of FGM plate using a new first shear deformation plate theory

  • Hadji, Lazreg;Meziane, M. Ait Amar;Abdelhak, Z.;Daouadji, T. Hassaine;Bedia, E.A Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.127-140
    • /
    • 2016
  • In this paper, a new first shear deformation plate theory based on neutral surface position is developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher order shear deformation theories. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Mechanical Characteristics of Shell Members Considering the Geometrical and Material Nonlinearity (기하 및 재료 비선형을 고려한 셸 부재의 역학적 특성)

  • Kim, Ki-Tae;Park, Beom-Hee;Kim, Da-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2018
  • This paper analyse the mechanical characteristics of geometrical and material nonlinearity behavior of cylindrical shell roofs subjected to a concentrated load. The shell elements were modeled using 'NISA2016' software as 3D general shell element and 3D composite shell element. The 3D shell element includes deformation due to bending, membrane, membrane-bending coupling and shear perpendicular to the grain effects is suited for modeling moderately thick or thin general shells and laminated composite shells. And The 3D composite shell element consists of a number of layers of perfectly bonded anisotropic and orthotropic materials. The purpose of this research is to analysis the load-deflection curves considering the combined geometric and material nonlinearity of cylindrical shells. In a shallowed cylindrical shell, snap-through curve can be found.