• Title/Summary/Keyword: coupling beams

Search Result 188, Processing Time 0.031 seconds

Design Strength of Coupled Shear Wall System according to Variation of Strength and Stiffness of Coupled Shear Wall (병렬전단벽의 강도와 강성이 커플링보의 설계내력에 미치는 영향)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.743-750
    • /
    • 2016
  • In this research, the effects of the strength and stiffness of shear walls on the design strength of coupling beams are studied in the shear wall-coupling beam structural system widely used as the lateral-drift resistant system of high-rise buildings. The results show that the design strength of the coupling beams decreases with decreasing concrete strength and core wall thickness, but the shape remains unchanged. In all six models, the design strength of the coupling beams has the largest value at the 10~15th floors in a 40-story building. In other words, the design strength of the coupling beams has the largest value at 0.25H~0.375H where the inflection point exists. The thicker the walls, the smaller the change in the member forces. The thickness of the coupled shear walls has more influence on the design strength of the coupling beams than the concrete strength.

Deformation Characteristics of Steel Coupling Beam-Wall Connection (철골 커플링 보-벽체 접합부의 변형 특성)

  • Park Wan-Shin;Jeon Esther;Han Min-Ki;Kim Sun-Woo;Hwang Sun-Kyung;Yun Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.435-438
    • /
    • 2005
  • The use of new hybrid systems that combine the advantages of steel and reinforced concrete structures has gained popularity. One of these new mixed systems consists of steel beams and reinforced concrete shear wall, which represents a cost- and time-effective type of construction. A number of previous studies have focused on examining the seismic response of steel coupling beams in a hybrid wall system. However, the shear transfer of steel coupling beam-wall connections with panel shear failure has not been thoroughly investigated. The objective of this research was to investigate the seismic performance of steel coupling beamwall connections governed by panel shear failure. To evaluate the contribution of each mechanism, depending upon connection details, an experimental study was carried out The test variables included the reinforcement details that confer a ductile behaviour on the steel coupling beam-wall connection, i.e., the face bearing plates and the horizontal ties in the panel region of steel coupling beam-wall connections. It investigates the seismic behaviour of the steel coupling beams-wall connections in terms of the deformation characteristics. The results and discussion presented in this paper provide background for a companion paper that includes a design model for calculating panel shear strength of the steel coupling beam-wall connections.

  • PDF

The Steel Coupling Beam-Wall Connections Strength

  • Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.135-145
    • /
    • 2006
  • In high multistory reinforced concrete buildings, coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic effects. Coupled shear walls are usually built over the whole height of the building and re laid out either as a series of walls coupled by beams and/or slabs or a central core structure with openings to accommodate doors, elevators walls, windows and corridors. A number of recent studies have focused on examining the seismic response of concrete, steel, and composite coupling beams. However, since no specific equations are available for computing the bearing strength of steel coupling beam-wall connections, it is necessary to develop such strength equations. There were carried out analytical and experimental studies to develop the strength equations of steel coupling beam-connections. Experiments were conducted to determine the factors influencing the bearing strength of the steel coupling beam-wall connection. The results of the proposed equations were in good agreement with both test results and other test data from the literature. Finally, this paper provides background for design guidelines that include a design model to calculate the bearing strength of steel coupling beam-wall connections.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

The Mechanism of Shear Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 전단 저항 기구와 변형 능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.50-53
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Seismic Behavior of Steel Coupling Beams (철골 커플링 보의 내진거동)

  • Park Wan-Shin;Yun Hyun-Do;Hwang Sun-Kyung;Han Byung-Chan;Han Min-Ki;Lee Jong-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.93-96
    • /
    • 2004
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. The cyclic response of steel coupling beams embedded into reinforced concrete boundary elements was studied. Three half-scale subassemblies representing a portion of a prototype structure were designed. constructed, and tested. The main test variables were the connection details of hybrid coupled shear wall. These efforts have resulted in details for increasing the seismic capacity of steel coupling beam in the seismic behavior of buildings.

  • PDF

The Mechanism of Shear Resistance and Deformability for Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.233-240
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

The Study on Degree of Coupling in Coupled Shear Wall System (병렬 전단벽의 커플링 정도에 관한 연구)

  • Park Wan-Shin;Yoon Hyun-Do;Hwang Sun-Kyung;Kim Sun-Woo;Han Min-Ki;Lee Won-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.135-138
    • /
    • 2005
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. It includes that the evaluation of the degree of coupling between the shear walls and the coupling beams. It is demonstrated through a review of experimental investigations of coupling beam behavior that often the coupling beam ductility demand exceeds the expected available ductility. As a result, it is possible that coupled shear wall system will not behave as desired in the course of a significant seismic event. Limits to the allowable degree of coupling are proposed as a remedy to this apparent deficiency.

  • PDF

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.