• Title/Summary/Keyword: coupled responses

Search Result 449, Processing Time 0.023 seconds

Intra-Industry Market Response to the Tae-an Oil Spill Accident and the Corporate Environmental Disclosure (태안만 원유유출사건에 대한 시장반응과 환경공시)

  • Choi, Jong-Seo;Lim, Hyoung-Joo
    • Journal of Environmental Policy
    • /
    • v.11 no.2
    • /
    • pp.17-54
    • /
    • 2012
  • This paper researched market responses for listed companies in several industries affected by the major oil spill accident off the coast of Taean, in December 7, 2007. The Taean accident triggered considerable concerns in people over the possibility of potential future regulation in shipbuilding and petroleum industries. However, the accident also provided an unexpected business opportunity for environmental clean-up industry and shipbuilding industry. The oil spill triggered the acceleration of the enactment of policies that require all new oil tankers to be constructed with double hull, which is interpreted as a good news for shipbuilding industry. Increased public pressure coupled with the prospect of tightened regulation is expected to decrease the market values of firms in the affected business fields. The stock prices of shipbuilding companies dropped after the incident but dramatically surged after the enactment of the policy in January 31, 2008. Our study also found that companies with more extensive prior environmental disclosure had less negative market reactions during the first sixteen days following the accident.

  • PDF

Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure (초대형 반잠수식 해양 구조물의 최적 감쇠 모델에 대한 고찰)

  • Lee, Hyebin;Bae, Yoon Hyeok;Kim, Dongeun;Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • In order to analyze the response of the offshore structure numerically, the linear potential theory is generally applied for simplicity, and only the radiation damping is considered among various damping forces. Therefore, the results of a numerical simulation can be different from the motion of the structure in a real environment. To reduce the differences between the simulation results and experimental results, the viscous damping, which affects the motion of the structure, is also taken into account. The appropriate damping model is essential for the numerical simulation in order to obtain precise responses of the offshore structure. In this study, various damping models such as linear or quadratic damping and the nonlinear drag force from numerous slender bodies were used to simulate the free decay motion of the platform, and its characteristics were confirmed. The optimized damping model was found by comparing the simulation results to the experimental results. The hydrodynamic forces and wave exciting forces of the structure were obtained using WAMIT, and the free decay test was simulated using OrcaFlex. A free decay test of the scale model was performed by KRISO.

The role of lysophosphatidic acid receptor 1 in inflammatory response induced by lipopolysaccharide from Porphyromonas gingivalis in human periodontal ligament stem cells

  • Kim, Dong Hee;Seo, Eun Jin;Tigyi, Gabor J.;Lee, Byung Ju;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.42-50
    • /
    • 2020
  • Lysophosphatidic acid (LPA) is a lipid messenger mediated by G protein-coupled receptors (LPAR1-6). It is involved in the pathogenesis of certain chronic inflammatory and autoimmune diseases. In addition, it controls the self-renewal and differentiation of stem cells. Recent research has demonstrated the close relationship between periodontitis and various diseases in the human body. However, the precise role of LPA in the development of periodontitis has not been studied. We identified that LPAR1 was highly expressed in human periodontal ligament stem cells (PDLSCs). In periodontitis-mimicking conditions with Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS) treatment, PDLSCs exhibited a considerable reduction in the cellular viability and osteogenic differentiation potential, in addition to an increase in the inflammatory responses including tumor necrosis factor-α and interleukin-1β expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Of the various LPAR antagonists, pre-treatment with AM095, an LPAR1 inhibitor, showed a positive effect on the restoration of cellular viability and osteogenic differentiation, accompanied by a decrease in NF-κB signaling, and action against Pg-LPS. These findings suggest that the modulation of LPAR1 activity will assist in checking the progression of periodontitis and in its treatment.

A Study on Equivalent Modal Damping Values of Soil-Structure Coupling Models (지반-구조물 연계모델의 등가감쇠값에 관한 연구)

  • Park, Hyung Ghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.241-248
    • /
    • 1987
  • The theoretical backgrounds of the several methods were surveyed and reviewed to fin out the adequate one to determine equivalent modal damping values in solving the dynamic problem of soil-structure interaction by mode superposition method. Furthermore the rigorous damping matrix of equation of motion was obtained through component mode synthesis technique and used in direct integration of the equation. The analytical results by direct integration method were compared with those of mode superposition approach using the various sets of equivalent modal damping values calculated by the methods to be reviewed. Two types of superstructures and four kinds of subsurface conditions were considered and combined to make soil-structure coupled models. It was realized that dissipating energy method gives the equivalent modal damping values which lead the most similar results to direct integration ones. In case of fixed base, the responses of all methods except stiffness weighted approach are almost equal to those of direct integration method.

  • PDF

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

Influence of corrosive phenomena on bearing capacity of RC and PC beams

  • Malerba, Pier Giorgio;Sgambi, Luca;Ielmini, Diego;Gotti, Giordano
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.117-143
    • /
    • 2017
  • The attack of environmental aggressive agents progressively reduces the structural reliability of buildings and infrastructures and, in the worst exposition conditions, may even lead to their collapse in the long period. A change in the material and sectional characteristics of a structural element, due to the environmental damaging effects, changes its mechanical behaviour and varies both the internal stress redistribution and the kinematics through which it reaches its ultimate state. To identify such a behaviour, the evolution of both the damaging process and its mechanical consequences have to be taken into account. This paper presents a computational approach for the analysis of reinforced and prestressed concrete elements under sustained loading conditions and subjected to given damaging scenarios. The effects of the diffusion of aggressive agents, of the onset and development of the corrosion state in the reinforcement and the corresponding mechanical response are studied. As known, the corrosion on the reinforcing bars influences the damaging rate in the cracking pattern evolution; hence, the damage development and the mechanical behaviours are considered as coupled phenomena. The reliability of such an approach is validated in modelling the diffusion of the aggressive agents and the changes in the mechanical response of simple structural elements whose experimental behaviour is reported in Literature. A second set of analyses studies the effects of the corrosion of the tendons of a P.C. beam and explores potentially unexpected structural responses caused by corrosion under different aggressive exposition. The role of the different types and of the different positions of the damaging agents is discussed. In particular, it is shown how the collapse mode of the beam may switch from flexural to shear type, in case corrosion is caused by a localized chloride attack in the shear span.

Proteome analysis of roots of sorghum under copper stress

  • Roy, Swapan Kumar;Cho, Seong-Woo;Kwon, Soo Jeong;Kamal, Abu Hena Mostafa;Lee, Dong-Gi;Sarker, Kabita;Lee, Moon-Soon;Xin, Zhanguo;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.130-130
    • /
    • 2017
  • Sorghum bicolor is considered as copper-tolerant species. The present study was conducted to understand the copper tolerance mechanism in Sorghum seedling roots. Morphological and effects of Cu on other interacting ions were observed prominently in the roots when the plants were subjected to different concentrations (0, 50, and $100{\mu}M$) of $CuSO_4$. However, the morphological characteristics were reduced by Cu stress, and the most significant growth inhibition was observed in plants treated with the highest concentration of $Cu^{2+}$ ions ($100{\mu}M$). In the proteome analysis, high-throughput two-dimensional polyacrylamide gel electrophoresis coupled with MALDI-TOF-TOF mass spectrometry was performed to explore the molecular responses of Cu-induced sorghum seedling roots. In two-dimensional silver-stained gels, a total of 422 differentially expressed proteins (${\geq}1.5-fold$) were identified using Progenesis SameSpot software. A total of 21 protein spots (${\geq}1.5-fold$) from Cu-induced sorghum roots were analyzed by mass spectrometry. Of the 21 differentially expressed protein spots from Cu-induced sorghum roots, a total of 10 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of the most identified protein species from the roots that function in stress response and metabolism was significantly enhanced, while protein species involved in transcription and regulation were severely reduced. The results obtained from the present study may provide insights into the tolerance mechanism of seedling roots in Sorghum.

  • PDF

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.311-314
    • /
    • 2006
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely soft cohesive soil is applied to the self-propelled miner. The hydrodynamic forces and moments are included in the dynamic models of vehicle and lifting pipe system. Hinged and fixed constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-b method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

  • PDF

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.

A Study on the Bending and Torsional Behaviors of Cable-Stayed Bridges under a Concentrated Moving Load (집중 이동하중을 받는 사장교의 휨 및 비틈 거동에 관한 연구)

  • Chang, Sung Pil;Yhim, Sung Soon;Chu, Seok Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.1-12
    • /
    • 1989
  • The nonlinearity of a cable-stayed bridge results from the large displacement of main girder due to a long span, the catenary action of cables and the flexural stiffness reduced by large axial forces. The dynamic behaviour of a cable-stayed bridge plays an important role in determining its safety. Especially, when the eccentrically moving load is applied to a cable-stayed bridge, the torsional vibration and vertical vibration are coupled and moreover the variation of cable tensions shows important dynamic characteristics. This dissertation presents a theoretical study and a finite element procedure for analysis of a cable-stayed bridge under a eccentrically moving load. Attention is focused on the dynamic behaviours such as dynamic increments of cable tensions and nodal displacements, with the variety of velocities and eccentricities of moving load. It is found that a moving load with eccentricity can have significant effects upon the responses; the torsion of bridge deck and the increments of cable tensions, according to the present results in this study.

  • PDF