• Title/Summary/Keyword: coupled electric field

Search Result 153, Processing Time 0.032 seconds

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Electrorheology of HMDA Coupled Chitosan Succinate Suspension as an Anhydrous ER Fluid

  • Kong, Seong-Wook;Kim, Seung-Wook;Lee, Sang-Soon;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.7-9
    • /
    • 2008
  • The electrorheology of the HMDA coupled chitosan succinate suspension in silicone oil was investigated. HMDA coupled chitosan succinate suspension showed a typical ER response upon application of an electric field. The shear stress for the HMDA coupled chitosan succinate suspension exhibited an electric field power of 2.0. The experimental results for the HMDA coupled chitosan succinate suspension was found to be an anhydrous ER fluid.

Numerical Analysis of Arc-Heated Flow through a solution of Electric Field (전기장 해석을 통한 아크/열 유동 해석)

  • Kim Chin-Su;Oh Se-Jong;Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • This paper presents the results of the application of a computational fluid dynamics algorithm for the simulation of plasma flows of arc-heated jet. The underlying physical model is based on the axisymmetric form of the conservation equations that are coupled with an arc model including Ohm heating, electromagnetic forces. The arc model given as a source term in fluid dynamic equations is determined by a solution of electric potential field governed by an elliptic partial differential equation. The governing equation of electric field is loosely coupled with fluid dynamic equations by an electric conductivity that is a function of state variables. However, the electric fields and flow fields cannot be solved In fully coupled manner, but should be solved iteratively due to the different characteristics of governing equations. With this solution approach, several applications of arc flow analysis will be presented including Arc Thruster and Circuit Breaker.

  • PDF

A Shared Channel Design for the Power and Signal Transfers of Electric-field Coupled Power Transfer Systems

  • Su, Yu-Gang;Zhou, Wei;Hu, Aiguo Patrick;Tang, Chun-Sen;Hua, Rong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.805-814
    • /
    • 2016
  • Electric-field coupled power transfer (ECPT) systems have been proposed as an alternative wireless power transfer (WPT) technology in recent years. With the use of capacitive plates as a coupling structure, ECPT systems have many advantages such as design flexibility, reduced volume of the coupling structure and metal penetration ability. In addition, wireless communications are effective solutions to improve the safety and controllability of ECPT systems. This paper proposes a power and signal shared channel for electric-field coupled power transfer systems. The shared channel includes two similar electrical circuits with a band pass filter and a signal detection resistor in each. This is designed based on the traditional current-fed push-pull topology. An analysis of the mutual interference between the power and signal transmission, the channel power and signal attenuations, and the dynamic characteristic of the signal channel are conducted to determine the values for the electrical components of the proposed shared channel. Experimental results show that the designed channel can transfer over 100W of output power and data with a data rate from 300bps to 120 kbps.

Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method

  • Jarng, S.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.211-218
    • /
    • 1999
  • This paper describes the application of a coupled finite element-boundary element method (FE-BEM) to obtain the steady-state response of a piezoelectric transducer. The particular structure considered is a PZT4 disc-typed projector. The projector is three-dimensionally simulated to transduce applied electric charge on axial surfaces of the piezoelectric disc to acoustic pressure in air or in water. The directivity pattern of the acoustic field formed from the projected sound pressure is also simulated. And the displacement of the disc caused by the externally applied electric charge is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

An Electric-Field Coupled Power Transfer System with a Double-sided LC Network

  • Xie, Shi-Yun;Su, Yu-Gang;Zhou, Wei;Zhao, Yu-Ming;Dai, Xin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.289-299
    • /
    • 2018
  • Electric-field coupled power transfer (ECPT) systems employ a high frequency electric field as an energy medium to transfer power wirelessly. Existing ECPT systems have made great progress in terms of increasing the transfer distance. However, the topologies of these systems are complex, and the transfer characteristics are very sensitive to variations in the circuit parameters. This paper proposes an ECPT system with a double-sided LC network, which employs a parallel LC network on the primary side and a series LC network on the secondary side. With the same transfer distance and output power, the proposed system is simpler and less sensitive than existing systems. The expression of the optimal driving voltage for the coupling structure and the characteristics of the LC networks are also analyzed, including the transfer efficiency, parameter sensitivity and total harmonic distortion. Then, a design method for the system parameters is provided according to these characteristics. Simulations and experiments have been carried out to verify the system properties and the design method.

Power Stage Design for a Surface Wireless Power Transmission System using a Coupled Electric Field (전계결합을 이용한 면대면 무선 에너지 전송회로 개발)

  • Choi, Sung-Jin;Kim, Se-Yeong;Choi, Byung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Conventional wireless power transfer methods based on coupled magnetic fields need a complex winding structure on the surface of the energy transfer and shows poor efficiency near metal objects due to the eddy current effect. In this study, to mitigate these problems, we investigate an electric field-coupled power transmission system, which is less prone to metal object problems and EMI. Because of the fundamental physical limit in the size of link capacitances, a half-bridge converter with an impedance matching transformer is proposed and the design procedure is derived to provide a soft-switching scheme. Hardware implementation shows that the proposed scheme with a pair of 10cm by 10cm copper plate can power a 1.4W USB FAN in a separation of 0.2mm by using insulating paper when driven by 227 kHz gate pulse.

The Coupled Electro-Thermal Field Analysis for Predicting Over-Current Protector Behavior

  • Bae, Jae-Nam;Lee, Sung-Gu;Han, Jung-Ho;Chung, Hae-Yang;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.43-48
    • /
    • 2008
  • The characteristics of heat transfer of the bimetal disc for over-current protection device is specified. Bimetal consists of two metals which have a different thermal expansion coefficient. To analyze the thermal characteristics, temperature distribution when bimetal acts as a switch is calculated. As usual, heat source is applied to the bimetal and electric current is heat source in the over-current protection switch. In this paper, thermal distribution are obtained by solving a coupled electro-thermal field with 3D finite element method.