본 연구에서는 플라즈마 분사장치를 활용하여 항력감소를 위한 기초 실험을 수행하였다. 가시화 장비와 항력 측정 장비를 이용하여 기초 실험 장치를 구성하였다. 자유유동 환경에서 분사되는 플라즈마 역분사 제트를 가시화하기 위한 방법으로 쉴리렌 기법을 활용하였다. 가시화 실험 결과를 통해 플라즈마 제트의 침투와 유동구조 변화를 관찰하였다. 항력감소 가능성을 측정하기 위한 방법으로 로드셀을 이용한 측정을 수행하였다. 그 결과 초음속 자유유동 조건에서 역으로 분사되는 플라즈마를 통해 항력이 6.2% 감소함을 보였다.
수치법을 검증하고 번형률과 연료농도가 무중력 확산화염 구조에 미치는 영향을 파악하기 위해, 무중력에서의 비예혼합 메탄-공기 대향류 화염의 구조를 FDS의 축대칭 모사로 조사하였다. 연료 중의 메탄 몰분율 $X_m$=20, 50, 80%와 각각의 몰분율에서 변형률 $a_g$=20, 50, $90s^{-1}$의 계산결과를 1차원 화염코드인 OPPDIF의 결과와 비교하였다. 축대칭 모사로 계산한 온도와 축방향 유속의 분포가 1차원 모사 결과와 잘 일치하였다. 화염의 두께와 위치, 정체점을 잘 예측함으로써 FDS를 넓은 범위의 변형률과 연료농도의 대향류 화염에 적응할 수 있음을 확인하였다.
변형률이 대향류 화염의 구조에 미치는 영향을 조사하기 위해, 무중력상태에서의 축대칭 메탄-공기 대향류화염의 시뮬레이션을 수행하였다. 질소와 메탄의 혼합물인 연료 중 메탄의 몰분율 Xm= 20, 50, $80\%$와 각 몰분율당 변형률 ag= 20, 60, 90 $s^{-1}$에 대한 화염형태와 온도 및 축방항 속도의 분포를 비교하였다. 온도와 축방항 속도 분포가 1차원 화염코드인 OPPDIF의 결과와 잘 일치하였다. 또 축대칭 시물레이션을 통해, 변형률이 증가하면 화염이 반경방향으로 늘어나 화염의 반경은 증가하고 두께가 감소함을 확인하였다.
The effect of DC electric fields on the flame extinction was investigated experimentally in counterflow configurations for the methane/oxygen/nitrogen diffusion flame. The electric fields was applied by connecting the high voltage and ground terminals to the upper and lower burners, respectively. In case of having electric fields, several modes of flame extinction was observed according to the electric field intensity and strain rate defined by the exit velocity. To visualize and characterize the flame structure and intensity, planar LIF technique was adopted for OH radicals. Consequently, several length scales, including the flame width, thickness, and height from the burner tip, were introduced to explain the various flame behaviors and to characterize the flame extinctions. It was found that the variation of flame width and the chemical reaction are strongly related to a critical electric field intensity, thus the various modes of diffusion flame extinction could be observed due to the electric fields.
Steady-state structure and acoustic-pressure responses of $H_2$/Air counterflow diffusion flames are studied numerically with a detailed chemistry in view of acoustic instability. The Rayleigh criterion is adopted to judge acoustic amplification or attenuation from flame responses. Steady-state flame structures are first investigated and flame responses to various acoustic-pressure oscillations are numerically calculated in near-equilibrium and near-extinction regimes. The acoustic responses of $H_2$/Air flame show that the responses in near-extinction regime always contribute to acoustic amplification regardless of acoustic-oscillation frequency Flames near extinction condition are sensitive to pressure perturbation and thereby peculiar nonlinear responses occur, which could be a possible mechanism in generating the threshold phenomena observed in combustion chamber of propulsion systems.
Single phase heat transfer coefficients were measured for turbulent water flow in a micro-fin tube by using Wilson plot technique. An experiment for counterflow heat exchange between the micro-fin tube and its outer annulus passage was performed. The annulus side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a micro-fin tube were obtained by Wilson plot technique. Nusselt numbers based on the real heat transfer area and the nominal area were about 35% and 50% larger than those for smooth tube respectively Also, single-phase heat transfer correlations based on real heat transfer area and nominal area have been proposed for a micro-fin tube.
Sooting characteristics of counterflow ethylene/propane mixture flames have been experimentally studied to investigate the fuel structure effect on PHM and soot formation. Laser-induced incandescene and laser-induced fluorescene techniques were employed to measure soot volume fraction and polycyclic aromatic hydrocarbon (PAH) concentration, respectively. Importance of $C_{3-}$species on PAH growth as well as the H-abstraction-C$_2$$H_2$addition (HACA) mechanism has been emphasized, considering that PAH growth rate is greater for with mixed fuel than fer pure fuel flames. It was also confirmed that HACA pathways are the dominant soot growth mechanism. A new PAH growth model including both $C_{2-}$ and $C_{3-}$growth mechanisms is proposed based on the experimental results.
Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.
Flame structure of diffusion flame interacting with a single vortex was investigated with direct numerical simulation (DNS). A well-known counterflow diffusion flame was used as an initial flat flame and single vortices were made by issuing a high-velocity jet abruptly in fuel- and air-side. The variations in the maximum concentration of major species (CO and $CO_2$) and NOx (NO and $NO_2$) with the stoichiometric scalar dissipation rate were investigated. Unsteady effects in the species concentration variation of the flame interacting with a vortex were identified by comparing with that of steady flame. $NO_2$ formation characteristics of the flame interacting with a vortex were well understood by investigating the $HO_2$ formation. To enhance the prediction performance in the fire simulation, current turbulent combustion modelings are needed to be modified by adopting the unsteady effects in the species concentrations of diffusion flame interacting with a vortex.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.