• Title/Summary/Keyword: counter-rotation

Search Result 60, Processing Time 0.024 seconds

Reduction Chattering Error of Reed Switch Sensor for Remote Measurement of Water Meter (Reed Switch 센서를 이용한 원격 검침용 상수도 계량기에서 Chattering 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kwon, Jong-Won;Park, Yong-Man;Koo, Sang-Jun;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.377-379
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors used for automatic remote measurement of water supply system, a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used in measurement application by detecting the rotational or translational displacement. To apply for flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just installed simply on the mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor, two steel leaf springs make mechanical contact and apart as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But it occurs data difference or errors by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing car near to the switch sensor installed location. In order to reduce chattering error, most system uses just software methods for example using filter and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical hysteresis characteristics.

  • PDF

Growth and Characterization of LaAlO$_3$ Single Crystals by the Traveling Solvent Floating Zone Method (Travelin Solvent Floating Zone법에 의한 LaAlO$_3$ 단결정의 성장 및 특성)

  • 정일형;임창성;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.280-286
    • /
    • 1998
  • LaAlO3 Single crystals used as a substrate for thin film depositions of a high temperature oxide su-perconductor YB2Cu3O7 and applied to microwave frequencies were grown by the Traveling Solvent Flati-ing Zone (TSFZ) method and characterized. For the growth of LaAlO3 single crystals polycrystalline fe-edrods were prepared from powder mixture of La2O3 and Al2O3 with a mole ratio of 1:1 calcined at 110$0^{\circ}C$ for 3h and sintered at 140$0^{\circ}C$ for 4h The growth LaAlO3 crystals was 4-5mm in diameter 30mm in length and dark brown. The growth rate was 2-3mm/h and the rotation speeds were 10rpm for an upper ro-tation and 40 rpm for a lower rotation The growing crystals and the feedrods were counter-rotated. The orientation of the grown single crystals of LaAlO3 was identified to be [111] direction. Dielectric constants were measured to be 30-33 between 100 kHz and 1 MHz in the 30$0^{\circ}C$ to 45$0^{\circ}C$ temperature range and 102 in a range of 100 kHz at the phase transformation temperature of 522$^{\circ}C$ Dielectric losses were calculated to be 1.8$\times$10-4 at the room temperature and 5.7$\times$10-3 at the phase transformation temperature. Lattice con-stants of the grown crystlals were determined to be aR=5.3806 $\AA$ and $\alpha$=60.043$^{\circ}$ by the least square method.

  • PDF

Effect of Cutout Orientation on Stress Concentration of Perforated Plates with Various Cutouts and Bluntness

  • Woo, Jin-Ho;Na, Won-Bae
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.95-101
    • /
    • 2011
  • Perforated plates with cutouts (or holes) are widely used in structural members. These cutouts provide stress concentration in plates. Extensive studies have been carried out on stress concentration in perforated plates, which consider cutout shapes, boundary conditions, bluntness of cutouts, and more. This study presents stress concentration analyses of perforated plates with not only various cutouts and bluntness but also different cutout orientations. Especially, the effect of cutout orientation on stress concentration is emphasized since structural members have become more complicated recently. To obtain stress concentration patterns, a finite element program, ANSYS, is used. For the designated goal, three parameters are considered as follows: the shapes of polygonal cutouts (circle, triangle, and square), bluntness (a counter measure of radius ratio, r/R), and rotation of cutouts (${\theta}$). From the analyses, it is shown that, in general, as bluntness increases, the stress concentration increases, regardless of the shape and rotation. A more important finding is that the stress concentration increases as the cutouts become more oriented from the baseline, which is the positive horizontal axis (+x). This fact demonstrates that the orientation is also a relatively significant design factor to reduce stress concentration. In detail, in the case of the triangle cutout, orienting one side of the triangle cutout to be perpendicular to the applied tensile forces is preferable. Similarly, in the case of the square cutout, it is more advantageous to orient two sides of square cutout to be perpendicular to the applied tensile force. Therefore, at the design stage, determining the direction of a major tensile force is required. Then, by aligning those polygon cutouts properly, we can reduce stress concentration.

A numerical simulation of radiative heat transfer coupled with Czochralski flow in cusp magnetic field (복사열전달을 고려한 Cusp 자기장이 있는 초크랄스키 단결정 성장 공정의 유동에 관한 연구)

  • Kim, Tae-Ho;Lee, You-Seop;Chun,Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.988-1004
    • /
    • 1996
  • The characteristics of flow and oxygen concentration are numerically studied in Czochralski 8" silicon crystal growing process considering radiative heat transfer. The analysis of net radiative heat flux on all relevant surfaces shows growing crystal affects the heater power. Furthermore, the variation of the radiative heat flux along the crystal surface in the growing direction is confirmed and should be a cause of thermal stress and defect of the crystal. The calculated distributions of temperature and, heat flux along the wall boundaries including melt/crystal interface, free surface and crucible wall indicate that the frequently used assumption of the thermal boundary conditions of insulated crucible bottom and constant temperature at crucible side wall is not suitable to meet the real physical boundary conditions. It is necessary, therefore, to calculate radiative heat transfer simultaneously with the melt flow in order to simulate the real CZ crystal growth. If only natural convection is considered, the oxygen concentration on the melt/crystal interface decreases and becomes uniform by the application of a cusp magnetic filed. The heater power needed also increases with increasing the magnetic field. For the case of counter rotation of the crystal and crucible, the magnetic field suppresses azimutal flow produced by the crucible rotation, which results in the higher oxygen concentration near the interface.

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

Mechanical Design of Ring Laser Gyroscope Using Finite Element Method (링 레이저 자이로스콥을 위한 유한요소법 기계 설계)

  • Lee, Jeong Ick
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region (dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM applications. As a result, comparing to the past result, the maximum prediction error of resonant frequency was within 3 percent and peak dither rate was within 5 percent. It was found that the theoretical equations can be feasible for the mechanical performance of dither.

The Mechanical Dither Design of Navigation Guide Structure (네비게이션 가이드 구조물의 기계적 진동설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1949-1954
    • /
    • 2010
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region(dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM(Finite Element Method) applications. As a result, the maximum prediction error of resonant frequency and peak dither rate was under 5 percent. The theoretical equations for the mechanical performances of dither can be said to be feasible.

Clinical analysis of early reoperation cases after orthognathic surgery (악교정수술 후 조기 재수술 증례의 분석)

  • Lee, Ju-Hwan;Lee, In-Woo;Seo, Byoung-Moo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • The factors influencing the relapse and recurrence of skeletal deformity after the orthognathic surgery include various factors such as condylar deviation, the amount of mandibular set-back, stretching force by the soft tissues and muscles around the facial skeleton. The purpose of this report is to recognize and analyze the possible factors of reoperation after orthognathic surgery, due to early relapses. Six patients underwent reoperation after the orthognathic surgeries out of 110 patients from 2006 to 2009 were included in this study. In most cases, clincal signs of the insufficient occlusal stability, anterior open bite, and unilateral shifting of the mandible were founded within 2 weeks postoperatively. Although elastic traction was initiated in every case, inadequate correction made reoperation for these cases inevitable. The chief complaints of five cases were the protruded mandible combined with some degree of asymmetric face and in the other one case, it was asymmetric face only. Various factors were considered as a major cause of post-operative instability such as condylar sagging, counter-clockwise rotation of the mandibular segment, soft tissue tension related with asymmetrical mandibular set-back, preoperatively existing temporomandibular disorder (TMD), poor fabrication of the final wafer, and dual bite tendency of the patients.

An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer (FDM 3D 프린팅의 경로생성을 위한 옵?루프의 꼬임제거 알고리즘)

  • Olioul, Islam Md.;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Tool path generation is a part of process planning in 3D printing. This is done before actual printing by a computer rather than an AM machine. The mesh geometry of the 3D model is sliced layer-by-layer along the Z-axis and tool paths are generated from the sliced layers. Each 2-dimensional layer can have two types of printing paths: (i) shell and (ii) infill. Shell paths are made of offset loops. During shell generation, twists can be produced in offset loops which will cause twisted tool paths. As a twisted tool path cannot be printed, it is necessary to remove these twists during process planning. In this research, An algorithm is presented to remove twists from the offset loops. To do so the path segments are traversed to identify twisted points. Outer offset loops are represented in the counter-clockwise segment order and clockwise rotation for the inner offset loop to decide which twisted loop should be removed. After testing practical 3D models, the proposed algorithm is verified to use in tool path generation for 3D printing.

Flow Characteristics of Rectangular Space with Asymmetric Inlet and Outlet (비대칭 입출구를 갖는 장방형공간의 유동특성)

  • Lee, Cheol-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.261-266
    • /
    • 2006
  • In this study, a scaled model chamber was built to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model by visualization equipment with laser apparatus. Four different kinds of measuring area were selected as experimental condition Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system and its software adopting two-frame grey-level cross correlation algorithm. The flow pattern reveals the large scale counter-clockwise forced-vortex rotation at center area.

  • PDF