• Title/Summary/Keyword: counter rotating system

Search Result 55, Processing Time 0.025 seconds

Numerical and Experimental Analyses of the Aerodynamic Characteristics of a Counter Rotating Axial Fan (엇회전식 축류홴의 공력 특성에 관한 전산 해석 및 실험)

  • Cho, Jin-Soo;Won, Yu-Phil;Lee, Moon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.325-337
    • /
    • 2000
  • A study was done on the numerical and experimental analyses of the aerodynamic characteristics of a counter rotating axial fan. The numerical analysis uses the frequency domain panel method developed for the aerodynamic analysis of interacting rotating systems, which is based on the unsteady lifting surface panel method. Each stage of interaction involves the solution of an isolated rotor, the interaction being done through the Fourier transform of the induced velocity field. Numerical results showed good agreements with other experimental data for single and counter rotating propeller systems. And they were compared with the experimental results of the counter rotating axial fan studied in the present paper. The performance test was carried out based on the Korean Standard (KS B 6311). It was focused on the relative efficiency increase of a counter rotating system for a single rotating one, and effects of the axial distance between the front and rear rotors on overall fan performances were investigated. As a result, it was shown that the counter rotating axial fan has the efficiency 14% higher than the single rotating one at peak efficiency points.

Numerical Study of Internal Flow in Twin Screw Extruder and Its Mixing Performance Analysis (이축 스크루 압출기내 유동의 수치 해석과 혼합 성능 분석)

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.32-41
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder.

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Tidal Turbine (10kW급 상반전 조류터빈의 설계와 성능에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • This paper aims to present the design and performance evaluation of a counter-rotating tidal turbine using CFD and to compare its performance with single rotor. The device scale is 10kW and the rotating part consists of two rotors which rotate in opposite direction. Compared with conventional single rotor, the counter-rotating system shows higher power efficiency at high stream velocity but lower efficiency at low stream velocity. The added counter-rotated rotor together helps improve the energy absorption capacity but has influence on the upstream rotor that reduces its performance. In terms of power capture, the designed counter-rotating tidal turbine is more advantageous in high speed tidal condition.

Aerodynamic Force Measurement of Counter-Rotating System (동축 반전 시스템의 공력측정)

  • Kim, Su-Yean;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.39-42
    • /
    • 2008
  • In the case of the general helicopter among rotorcraft, length of the rotor blade for thrust-generation is longer than that of fuselage and tail rotor is required in order to compensate moment of the fuselage. For those reasons, enough space for take-off and landing should be secured and an accessibility for building is low. Also, the accidents caused by tail rotor occur frequently. However, the case of counter-rotating has merits that tail rotor is unnecessary as well as length of the rotor blade can be shortened but has a weakness that the weight of body is increased. In the present study, aerodynamic force measurement on single rotor system equipped with NACA0012 airfoil, which has aspect ratio of 6 and chord length of 35.5 mm, was carried out. And measurement was conducted with blade which has a half size of the former blade by using single motor counter-rotating. Aerodynamic force measurement was acquired by using 6-component balances and coefficients of thrust and power were derived along the pitch angle varying from 0$^{\circ}$ to 90$^{\circ}$ with the increment of 10$^{\circ}$. Those aerodynamic force data will be utilized for the design and production of brand-new counter-rotating rotor blade system which has same thrust with single blade system and provides a good accessibility to building by reducing its blade length.

  • PDF

Design and Performance Evaluation of a 10kW Scale Counter-Rotating Wind Turbine Rotor (10kW급 상반전 풍력터빈 로터의 설계와 성능 평가에 관한 연구)

  • Hoang, Anh Dung;Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.104-112
    • /
    • 2014
  • The counter-rotating approach on wind turbine has been recently put in interest for its certain advantages in both design and performance. This paper introduces a study on a counter-rotating wind turbine designed and modeled using NREL airfoils S822 and S823. The aims of the study is to evaluate and discover the performance of the counter-rotating system, and compares to that of single rotor turbine of same design using numerical simulation. The results show higher performance of the counter-rotating system compared with single rotor case at TSR 3 to 5 but lower performance at higher TSR. This is due to the interaction between upstream and downstream rotors. Thus, the counter-rotating turbine is more efficient at low rotor rotational speed.

Numerical Study on Aerodynamic Performance of Counter-rotating Propeller in Hover Using Actuator Method (Actuator 기법을 이용한 제자리 비행하는 동축 반전 프로펠러 공력 성능에 관한 수치적 연구)

  • Kim, Dahye;Park, Youngmin;Oh, Sejong;Park, Donghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.30-44
    • /
    • 2021
  • Experimental investigation of counter-rotating propellers is subject to multiple time and cost constraint because of additional design parameters unlike single propeller. Also, a lot of computing time and resources are required for numerical analysis due to consideration of the interference between the upper and lower propellers. In the present study, numerical simulations were conducted to investigate the hover performance of counter-rotating propellers by using actuator method which is considered to be time-efficient. The accuracy of the present numerical methods was validated by comparing the ANSYS Fluent which is commercial CFD code. The axial spacing and rotational speed were selected as the analysis variables, and the aerodynamic performance was obtained under various conditions. Based on the obtained results, the Figure of Merit (FM) of single propeller and counter-rotating propellers and a prediction factor which enables prediction of counter-rotating propeller performance using a single propeller were derived to evaluate availability of the actuator method.

Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect (후류영향을 고려한 상반회전 풍력발전 시스템의 공력성능 예측에 관한 연구)

  • Dong, Kyung-Min;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.20-28
    • /
    • 2002
  • In this paper, the aerodynamic performance prediction of a 30kW counter-rotating (C/R) wind turbine system has been made by using the momentum theory as well as the two-dimensional quasi-steady strip theory with special care on the wake and the post-stall effects. In order to take into account the wake effects in the performance analysis, the wind tunnel test data obtained for a scaled blade are used. Both the axial and rotational inductions behind the auxiliary rotors are determined through the wake model. In addition, the optimum chord and twist distributions along the blades are obtained from the Glauert's optimum actuator disk model considering the Prandtl's tip loss effect. The performance results of the counter-rotating wind turbine system are compared with those of the conventional single rotor system and demonstrated the effectiveness of the counter-rotating wind turbine system.

Effect of Flare Angle in Counter-Rotating Swirler on Swirling Flow (동축 반전 스월러의 플레어 각도변화가 스월러 유동에 미치는 영향 연구)

  • Kim, Taek Hyun;Kim, Sung Don;Jin, Yu In;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Swirler generates the overall swirling flow in the combustion chamber and this swirling flow governs the flame stability and enhances fuel atomization. This paper deals with the flare angle effects on flow streamlines, recirculation zone, Central Toroidal Recirculation Zone(CTRZ) and Corner Recirculation Zone(CRZ) in the model combustion chamber using counter-rotating swirler. 2D PIV system was employed to obtain the velocity components and test condition was obtained using Reynolds Analogy equivalent to air test. We observed transitional flow patterns of flare angle increased. The obtained results show that the flare angle controls the behavior of Recirculation zone, Central Toroidal Recirculation Zone and Corner Recirculation Zone.

A Design of 10 kW Class Counter-Rotating Tidal Turbine Focusing on the Improvement of Operating Performance (성능계수 향상을 위한 10 kW급 상반전 조류터빈의 설계)

  • Hoang, Anh Dung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • Tidal turbine, which is relatively similar to wind turbine in term of operational principle, has become a potential solution for the sustainable development of global energy. This paper introduces author's work on tidal turbine which aims to improve the power efficiency by the adaption of counter-rotating concept. The turbine system is modelled and analyzed using computational simulation commercial code. Compared with other works, the counter-rotating tidal turbine presented here is expected to operate stably with high performance throughout a wide range of tip-speed-ratio. Moreover, the equability of individual performance of each rotor is an advantage.

Numerical analysis on two-dimensional vortex merger (이차원 와류 병합에 대한 수치적 연구)

  • Park, Sanghyun;Sheen, DongJin;Chang, Kyoungsik;Kwag, DongGi
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • During flight of the aircraft, the vortex merging phenomenon appears under the certain condition between co-rotating vortices which were generated at the wing tip and lifting-surface. And then these merged vortices at both sides show counter-rotating pattern to affect on the downstream of the aircraft. In this paper, the numerical simulations are conducted assuming this phenomenon in two-dimensional co-rotating or counter-rotating vortices pairs. Two-dimensional incompressible Navier-Stokes equations were converted into Vorticity-Streamfunction form and the Galerkin spectral method was adopted. The third order Runge-Kutta method was used for time integration. The effects on the vortex merger and degree of vortex merger were investigated according to time, Reynolds number, and changes in the distance between two vortices.