• Title/Summary/Keyword: cost functional

Search Result 745, Processing Time 0.027 seconds

Time-Dependent Density Functional Theory Study on Cyclopentadithiophene-Benzothiadiazole-Based Push-Pull-Type Copolymers for New Design of Donor Materials in Bulk Heterojunction Organic Solar Cells

  • Ku, Ja-Min;Kim, Dae-Kyun;Ryu, Taek-Hee;Jung, Eun-Hwan;Lansac, Yves;Jang, Yun-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1029-1036
    • /
    • 2012
  • Push-pull-type copolymers - low-band-gap copolymers of electron-rich fused-ring units (such as cyclopentadithiophene; CPDT) and electron-deficient units (such as benzothiadiazole; BT) - are promising donor materials for organic solar cells. Following a design principles proposed in our previous study, we investigate the electronic structure of a series of new CPDTBT derivatives with various electron-withdrawing groups using the time-dependent density functional theory and predict their power conversion efficiency from a newlydeveloped protocol using the Scharber diagram. Significantly improved efficiencies are expected for derivatives with carbonyl [C=O], carbonothioyl [C=S], dicyano [$C(CN)_2$] and dicyanomethylene [C=$C(CN)_2$] groups, but these polymers with no long alkyl side chain attached to them are likely to be insoluble in most organic solvents and inapplicable to low-cost solution processes. We thus devise several approaches to attach alkyl side chains to these polymers while keeping their high efficiencies.

Trap identification of the constitutive promoter-like sequences from the bacterial fish pathogen, as exemplified by Edwardsiella tarda

  • Lee, Sang-Yoon;Kim, Ki-Hong;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Journal of fish pathology
    • /
    • v.24 no.3
    • /
    • pp.297-305
    • /
    • 2011
  • A trap identification system for isolating functional sequences to allow the constitutive expression of foreign protein from Edwardsiella tarda was developed. Using the green fluorescent protein (GFP) reporter-based trap system, various functional sequences to drive heterologous expression of the GFP were selectable in Escherichia coli host. However from the bioinformatic sequence analysis, all the segments predicted as regulatory regions were not native promoters actually existing upstream of endogenous E. tarda genes. Instead, a number of non-authentic sequences, possibly resulted from the random shuffling and/or intermolecular ligation were also proven to be able to display a potent GFP expression in the recombinant E. coli. Further analysis with selected clones showed that both authentic and non-authentic sequences could function in as a constitutive promoter, leading quite a consistent and stable GFP expression after repetitive subcultures. Microscopic examination also confirmed the uniform pattern of GFP expression in every host bacterium. Semi-quantitative assay of GFP showed that there was no clear relationship between expression levels and organizational features of the promoters trapped. Functional promoter-like elements achieved in the present study could be a good starting material for multivalent genetic engineering of E. tarda in order to produce recombinant vaccines in a cost-effective fashion.

A Design and Implementation of Functional Array for Improvement of the Traversal Time (탐색시간의 개선을 위한 함수형 배열의 설계 및 구현)

  • Ju, Hyeong-Seok;Yu, Won-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1262-1272
    • /
    • 1996
  • Pure functional languages have the referential transparency feature sothat all objects cannot be updated destuctively. Once an aggregated data structure such as array is updated, both the original and newly updated array must be preserved to maintain reverential transparency. Thus, it is required to develop an efficient mechanism with which can reduce the maintenance cost while maintaining referential transparency for whole data. This study is to suggest a functional array to solve the problem, and them test it. For that, the proposed mechanism was implemented on a combinator graph reduction machine. The result shows that proposed mechanism reduces traversal time for array operations. Also, updating all versions and accessing the recent version are achieved in constant time without reconstruction of updated data in execution time.

  • PDF

A Priority Setting Method of the Design Specifications with regards to Functional Requirements at the stage of Concept Design (개념설계단계에서 요구품질을 고려한 설계사양 중요도 결정방법)

  • Park Ji-Hyung;Lee Joong-Ho;Yeom Ki-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.119-120
    • /
    • 2006
  • Prioritizing the design specifications among many alternatives is necessary at the stage of concept design. Design specifications have trade-offs between cost and performance, and the relationships among them, in the standpoint of various functional requirements, are complex. AHP(Analytic Hierarchy Process) method is one of the most popular ways of solving the priority setting problem. However, it is impossible to monitor the interim findings in the middle of the process, it is hard to predict the difference when changing pairwise comparison conditions, and the operation done by one person makes it hard to share the process simultaneously. This paper shows a new method of priority setting in this kind of decision making problem. This method is designed to support the realtime priority setting among many design specifications with regards to many functional requirements. A new algorithm and visualization methods are introduced, and the usability is verified in an exemplary concept design stage.

  • PDF

Fabrication of Functional ZnO Nano-particles Dispersion Resin Pattern Through Thermal Imprinting Process (ZnO 나노 입자 분산 레진의 thermal imprinting 공정을 통한 기능성 패턴 제작)

  • Kwon, Moo-Hyun;Lee, Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1419-1424
    • /
    • 2011
  • Nanoimprint lithography is a next generation lithography technology, which enables to fabricate nano to micron-scale patterns through simple and low cost process. Nanoimprint lithography has been applied in various industry fields such as light emitting diodes, solar cells and display. Functional patterns, including anti-reflection moth-eye pattern, photonic crystal pattern, fabricated by nanoimprint lithography are used to improve overall efficiency of devices in that fields. For these reasons, in this study, sub-micron-scaled functional patterns were directly fabricated on Si and glass substrates by thermal imprinting process using ZnO nano-particles dispersion resin. Through the thermal imprinting process, arrays of sub-micron-scaled pillar and hole patterns were successfully fabricated on the Si and glass substrates. And then, the topography, components and optical property of the imprinted ZnO nano-particles/resin patterns are characterized by Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy and UV-vis spectrometer, respectively.

Recent progress in the synthesis of luminescent copper clusters

  • Zhou, Shaochen;Wang, Fu;Wang, Chuanyi
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.113-128
    • /
    • 2016
  • Luminescent metallic clusters have attracted great interest due to their unique optical, electronic and chemical features. Comparing with intensively studied Au and Ag Clusters, Cu clusters are superior in the aspects of cost and wide industrial demanding. However, tiny copper clusters are extremely prone to aggregate and undergo susceptibility of oxidation, thereby the synthesis of fluorescent zero valent copper clusters is rather challenging. In this review, synthetic strategies towards luminescent copper clusters, including macromolecule-protection and micro molecule-capping, have been systematically surveyed. Both "bottom-up" and "top-down" synthetic routes are found to be effective in fabricating luminescent copper clusters, some of which are quite stable and possess decent luminescence quantum yields. In general, the synthesis of fluorescent copper clusters remains at its infant stage. A great deal of effort on developing novel and economic synthetic routes to produce bright and stable copper clusters is highly expected in future.

Prototype Product Based on the Functional Test of ANG Fuel Vessel Applied to Composite Carbon Fiber (탄소섬유 복합재료를 적용한 ANG 연료용기의 시제작 및 성능평가)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, an automobile market used to natural gas has emerged as fast-growing as the several countries, who holds abundant natural fuel resources, has promoted to supply the national agency for an automobile car. LNG fuel vessel is more efficient in another way as the energy density is high, but it requires a high technology and investment to maintain extreme low temperature. CNG fuel vessel are relatively low-cost alternative to LNG, but poorly economical in terms of energy density as well as showing safety issues associated with compressed pressure. The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. Therefore, it is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to the regulation of $CO_2$ emission. Herein, this study make the prototype ANG vessel not only based on the optimal design and analysis of material characteristic but also based on the shape design, and it suggest a new type for the composite carbon fiber vessel which verified functional test. Moreover, the detail shape design is analyzed by a finite element analysis, and its verifies the ANG vessel.

Irreversible luminescence from graphene quantum dots prepared by the chain of oxidation and reduction process

  • Jang, Min-Ho;Ha, Hyun Dong;Lee, Eui-Sup;Kim, Yong-Hyun;Seo, Tae Seok;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.222.1-222.1
    • /
    • 2015
  • Recently, graphene quantum dots (GQDs) have attracted great attention due to various properties including cost-effectiveness of synthesis, low toxicity, and high photostability. Nevertheless, the origins of photoluminescence (PL) from GQDs are unclear because of extrinsic states of the impurities, disorder structures, and oxygen-functional groups. Therefore, to utilize GQDs in various applications, their optical properties generated from the extrinsic states should be understood. In this work, we have focused on the effect of oxygen-functional groups in PL of the GQDs. The GQDs with nanoscale and single layer are synthesized by employing graphite nanoparticles (GNPs) with 4 nm. The series of GQDs with different amount of oxygen-functional groups were prepared by the chain of chemical oxidation and reduction process. The fabrication of a series of graphene oxide QDs (GOQDs) with different amounts of oxygen-contents is first reported by a direct oxidation route of GNPs. In addition, for preparing a series of reduced GOQDs (rGOQDs), we employed the conventional chemical reduction to GOQDs solution and controlled the amount of reduction agents. The GOQDs and rGOQDs showed irreversible PL properties even though both routes have similar amount of oxyen-functional groups. In the case of a series of GOQDs, the PL spectrum was clearly redshifted into blue and green-yellowish color. On the other hand, the PL spectrum of rGOQDs did not change significantly. By various optical measurement such as the PL excitation, UV-vis absorbance, and time-resolved PL, we could verify that their PL mechanisms of GOQDs and rGOQDs are closely associated with different atomic structures formed by chemical oxidation and reduction. Our study provides an important insights for understanding the optical properties of GQDs affected by oxygen-functional groups. [1]

  • PDF

A Rapid Preconcentration Method Using Modified GP-MSE for Sensitive Determination of Trace Semivolatile Organic Pollutants in the Gas Phase of Ambient Air

  • He, Miao;Xu, Qingjuan;Yang, Cui;Piao, Xiangfan;Kannan, Narayanan;Li, Donghao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2995-3000
    • /
    • 2014
  • A sensitive concentration method utilising modified gas-purge microsyringe extraction (GP-MSE) was developed. Concentration (reduction in volume) to a microlitre volume was achieved. PAHs were utilised as semivolatile analytes to optimise the various parameters that affect the concentration efficiency. The injection rate and temperature were the key factors that affected the concentration efficiency. An efficient concentration (75.0-96.1%) of PAHs was obtained under the optimised conditions. The method exhibited good reproducibility (RSD values that ranged from 1.5 to 9.0%). The GP-MSE concentration method enhances the volume reduction (concentration factor), leading to a low method detection limit ($0.5-15ngL^{-1}$). Furthermore, this method offers the advantage of small-volume sampling, enabling even the detection of diurnal hourly changes in the concentration of PAHs in ambient air. Utilising this method in combination with GC-MS, the diurnal hourly flux of PAHs from the gas phase of ambient air was measured. Indeed, the proposed technique is a simple, fast, low-cost and environmentally friendly.

A Facility Design Model for 1300 Capacity School Foodservice with Adjacency and Bubble Diagrams (근접요구도와 버블다이어그램을 적용한 1300식 규모의 학교급식 시설 설계 모델)

  • Jang, Sun-hee;Chang, Hye-Ja
    • Korean Journal of Community Nutrition
    • /
    • v.16 no.1
    • /
    • pp.98-112
    • /
    • 2011
  • This study aimed to suggest a 1300 scale of a middle school foodservice facility floor plan which was compliant to the principle of HACCP, as well as ensuring food and work safety, and the flow of personnel and food materials. which consisted of 46 nutrition teachers and 6 experts, responded with a questionnaire on the relationship of functional area and space. Using their opinions, key principles for the design of the facility were single direction movement of food materials, customers and workers; minimization of the cross-contamination through the separation of functional space; and securement of customer-focused efficiency; staff-centered convenience and efficiency; and work and food safety. After the completion of an adjacency diagram, bubble diagram and program statement, the functional areas of a 1300 scale middle school food-service facility were allocated as follows: $9.9\;m^2$ for the receiving area, $56.1\;m^2$ for the pre-preparation area, $10.5\;m^2$ for the food storage area, $6.0\;m^2$ for the supplies storage area, $97.8\;m^2$ for the cooking area, $33.6\;m^2$ for the service area, $52.5\;m^2$ for dish washing area, cafeteria $410.5\;m^2$, $4.5\;m^2$ for the front room, for a total of $725.8\;m^2$. Expert groups have pointed to limitations within this model as there are no windows in the office for the influx of fresh outside air and a need for the straight line installation of steam-jacket and frying kettles on the sides of windows. This study can be useful as the guidelines for estimating the investment cost of the facility and placing the placement of functional areas and equipment in the renovation of the facility. It can be also useful data for a methodology of foodservice facility design.