• Title/Summary/Keyword: cost calculation model

Search Result 260, Processing Time 0.032 seconds

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

The Improvement of maintainability evaluation method at system level using system component information and fuzzy technique (시스템의 구성품 정보와 퍼지 기법을 활용한 시스템 수준 정비도 평가 방법의 개선)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.100-109
    • /
    • 2019
  • Maintainability indicates the extent to which maintenance can be done easily and quickly. The consideration of maintainability is crucial to reduce the operation and support costs of weapon systems, but if the maintainability is evaluated after the prototype production is done and necessitates design changes, it may increase the cost and delay the schedule. The evaluation should verify whether maintenance work can be performed, and support the designers in developing a design to improve maintainability. In previous studies, the maintainability index was calculated using the graph theory at the early design phase, but evaluation accuracy appeared to be limited. Analyzing the methods of evaluating the maintainability using fuzzy logic and 3D modeling indicate that the design of a system with good maintainability should be done in an integrated manner during the whole system life cycle. This paper proposes a method to evaluate maintainability using SysML-based modeling and simulation technique and fuzzy logic. The physical design structure with maintainability attributes was modeled using SysML 'bdd' diagram, and the maintainability was represented by an AHP matrix for maintainability attributes. We then calculated the maintainability using AHP-based weighting calculation and fuzzy logic through the use of SysML 'par' diagram that incorporated MATLAB. The proposed maintainability model can be managed efficiently and consistently, and the state of system design and maintainability can be analyzed quantitatively, thereby improving design by early identifying the items with low maintainability.

Comparison of Spatial Interpolation Processing Environments for Numerical Model Rainfall and Soil Moisture Data (수치모델 강우 및 토양수분 자료의 공간보간 처리환경의 비교)

  • Seung-Min, Lee;Sung-Won, Choi;Seung-Jae, Lee;Man-Il, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.337-345
    • /
    • 2022
  • For data such as rainfall and soil moisture, it is important to obtain the values of all points required as geostatistical data. Spatial interpolation is generally performed in this process, and commercial software such as ArcGIS is often used. However, commercial software has fatal drawbacks due to its high expertise and cost. In this study, R, an open source-based environment with ArcGIS, a commercial software, was used to compare the differences according to the processing environment when performing spatial interpolation. The data for spatial interpolation was weather forecast data calculated through Land-Atmosphere Modeling Package (LAMP)-WRF model, and soil moisture data calculated for each cumulative rainfall scenario. There was no difference in the output value in the two environments, but there was a difference in user interface and calculation time. The results of spatial interpolation work in the test bed showed that the average time required for R was 5 hours and 1 minute, and for ArcGIS, the average time required was 4 hours and 40 minutes, respectively, showing a difference of 7.5%. The results of this study are meaningful in that researchers can derive the same results in a commercial software environment and an open source-based environment, and can choose according to the researcher's environment and level.

Pre/Post processor for structural analysis simulation integration with open source solver (Calculix, Code_Aster) (오픈소스 솔버(Calculix, Code_Aster)를 통합한 구조해석 시뮬레이션 전·후처리기 개발)

  • Seo, Dong-Woo;Kim, Jae-Sung;Kim, Myung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.425-435
    • /
    • 2017
  • Structural analysis is used not only for large enterprises, but also for small and medium sized ones, as a necessary procedure for strengthening the certification process for product delivery and shortening the time in the process from concept design to detailed design. Open-source solvers that can be used atlow cost differ from commercial solvers. If there is a problem with the input data, such as with the grid, errors or failures can occur in the calculation step. In this paper, we propose a pre- and post-processor that can be easily applied to the analysis of mechanical structural problems by using the existing structural analysis open source solver (Caculix, Code_Aster). In particular, we propose algorithms for analyzing different types of data using open source solvers in order to extract and generate accurate information,such as 3D models, grids and simulation conditions, and develop and apply information analysis. In addition, to improve the accuracy of open source solvers and to prevent errors, we created a grid that matches the solver characteristics and developed an automatic healing function for the grid model. Finally, to verify the accuracy of the system, the verification and utilization results are compared with the software used.

A Study on the National Competency Standards of Fashion Accessories Production (패션소품생산 분야의 국가직무능력표준(NCS) 개발에 관한 연구)

  • Suh, Seung-Hee;Lee, Shin-Young
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.1
    • /
    • pp.46-60
    • /
    • 2015
  • This study analyzed the process of development and verification of standards through the competency analysis of fashion accessories products in the development of 'National Competency Standards'(NCS), which was carried out in 2013 for the fashion industry. The NCS for fashion accessories production was developed through three Focus Group Interviews (FGIs) and fashion accessories production was defined as "the process of design, development and manufacture intended to produce items that improve the degree of completion of fashion products that are produced from textile fabric, knitted fabric, leather and other materials such as bags, belts, hats, gloves, scarves, neckties and socks with the exception of clothes". The competency unit for fashion accessories production was analyzed in 11 categories: development of design; development of materials; production of prototype samples; calculation of cost; determination of mass production model and price; planning of main manufacture process; ordering of materials; planning for mass production; preparation for mass production; mass production; and inspection of completed products, and the verification was carried out on development outcomes through a survey carried out of on-site personnel. This study recommends the following direction for future improvements based on an analysis of the development process of the NCS for fashion accessories production. First, future development of standards should first provide a rational category system for each area of fashion good production based on the production process, which should be followed by a detailed competency survey. Second, in order to ensure a more efficient verification survey, an expert for each competency unit should be designated for the develop standard to induce a more sincere response. Also the questionnaire should require supplementation in order to collect the various additional opinions of experts of the field. Finally, this study concludes that it is urgent to procure an education infrastructure and specialized professors in order to apply the competency standard for fashion accessories production to the education sector. This study also concludes that the government will be required to provide systematic and consistent support aimed at supplementing development and forming a firm collaborative working environment for the industry and academia in order to improve the current education environment and build a more field-oriented education environment.

Variation Analysis of Distance and Exposure Dose in Radiation Control Area and Monitoring Area according to the Thickness of Radiation Protection Tool Using the Calculation Model: Non-Destructive Test Field (계산 모델을 활용한 방사선방어용 도구 두께에 따른 방사선관리구역 및 감시구역의 거리 및 피폭선량 변화 분석 : 방사선투과검사 분야 중심으로)

  • Gwon, Da Yeong;Park, Chan-hee;Kim, Hye Jin;Kim, Yongmin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.279-287
    • /
    • 2020
  • Recently, interest in radiation protection is increasing because of the occurrence of accidents related to exposure dose. So, the nuclear safety act provides to install the shields to avoid exceeding the dose limit. In particular, when the worker conducts the non-destructive testing (NDT) without the fixed shielding structure, we should monitor the access to the workplace based on a constant dose rate. However, when we apply for permits for NDT work in these work environments, the consideration factors to the estimation of the distance and exposure dose are not legally specified. Therefore, we developed the excel model that automatically calculates the distance, exposure dose, and cost if we input the factors. We applied the assumption data to this model. As a result of the application, the distance change rate was low when the thickness of the lead blanket and collimator is above 25 mm, 21.5 mm, respectively. However, we didn't consider the scattering and build-up factor. And, we assumed the shape of the lead blanket and collimator. Therefore, if we make up for these limitations and use the actual data, we expect that we can build a database on the distance and exposure dose.

Improvement in Calculating Engineer Standard Wage Rate and Its Appropriate Level Computation (엔지니어링 노임단가 산출기준 개선방안과 적정 노임단가 추정)

  • Lee, Jae Yul;Lee, Hae Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.853-860
    • /
    • 2022
  • The purpose of this study is to suggest an improvement plan for the calculation method of the engineer standard wage rate (ESWR) and to compute a reasonable ESWR. To this end, an adequacy review of theESWR calculation criteria was conducted along with an extensive engineering industry survey. The survey results were analyzed using an effective response sample of 748 companies out of 1,000 survey samples extracted by stratifying the 5,879 survey population. The main results were as follows. ①When calculating the engineering service fee, the prime contractor's engineer wage is suitable for the ESWR. The ESWR can be estimated by the formula 'average wage÷[1-proportion of subcontract orders×(1-subcontract rate)].' ② The field survey showed that the number of monthly working days was 20.35-20.54 days at 99 % confidence interval, which was significantly different from the current standard (22 days). In addition, as a result of a legal review of the ESWR criteria, it was found that the number of working days should be calculated in accordance with the Labor Standards Act after 2022. ③ Applying government guidelines, the time difference between the wage survey and the ESWR application can be corrected by the past ESWR increase rate for a specific period. ④ Using modeling based on the analysis above, the current ESWR was 13.5-14.5 % lower than the appropriate level. A lower ESWR was driven by the non-reflection of subcontract structure (4.1 %), overestimation of monthly work days (6.8-7.8 %), and application of past wage (2.6 %). The proposed model is expected to be widely used in policy making, as it can provide a useful framework for calculating the standard wage rate in similar industries as well as calculating appropriate engineering fees.

The Study on the Estimation of Optimal Debt Ratio in Korean Automobile Industry (국내 자동차산업의 적정부채비율 추정을 위한 실증연구)

  • Seo, Beom;Kim, Il-Gon;Park, Ji-Hun;Im, In-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • This study explores an analytical mathematical model designed to estimate the optimal debt ratio of the Korean automobile industry, which has a more significant effect on the national economy than that of other industries, and attempts to estimate the optimal debt ratio based on objective data. The analytical model is based on ROA and ROE which uses the debt ratio as an independent variable and employs ROS, TAT, and NFCL as the related parameters. Regarding the NFCL, the optimal debt ratio is usually defined as the debt ratio that maximizes the ROA and ROE and is calculated using analytical procedures, such as by adding an equation that considers the debt ratio and the linearity relationship to the analytical model. This is because the optimal debt ratio can be calculated reliably by making use of an estimated value within a certain range, which is derived from more than two calculations rather than a single estimation starting from one calculation formula. In this study, for the estimation of the optimal debt ratio, the ROA and ROE are expressed as a quadratic equation with the debt ratio as the independent variable. Using this analysis procedure, the optimal debt ratio obtained using the data from the Korean automobile industry over a sixteen year period, which would optimize the profitability of the Korean automobile industry, was found to be 188% of the debt ratio in the ROA and 213% of the debt ratio in the ROE. This result was obtained by overcoming the problem of the reliability of the estimation value in spite of the limitations of the logical theory of this study, and can be interpreted as meaning that maintaining a debt ratio of 188% to 213% can enhance the profitability and reduce the risks in the Korean automobile industry. Furthermore, this indicates that the existing debt ratio of the Korean automobile industry is lower than the optimal value within the estimated range. Consequently, it is necessary for corporations to change their future debt ratio policies, given that the purpose of debt ratio management is to maintain safety and increase profitability, and to take into account the characteristics of the specific industry.

RAUT: An end-to-end tool for automated parsing and uploading river cross-sectional survey in AutoCAD format to river information system for supporting HEC-RAS operation (하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베이스 업로딩과 HEC-RAS 지원을 위한 RAUT 툴 개발)

  • Kim, Kyungdong;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1339-1348
    • /
    • 2021
  • In accordance with the River Law, the basic river maintenance plan is established every 5-10 years with a considerable national budget for domestic rivers, and various river surveys such as the river section required for HEC-RAS simulation for flood level calculation are being conducted. However, river survey data are provided only in the form of a pdf report to the River Management Geographic Information System (RIMGIS), and the original data are distributedly owned by designers who performed the river maintenance plan in CAD format. It is a situation that the usability for other purposes is considerably lowered. In addition, when using surveyed CAD-type cross-sectional data for HEC-RAS, tools such as 'Dream' are used, but the reality is that time and cost are almost as close as manual work. In this study, RAUT (River Information Auto Upload Tool), a tool that can solve these problems, was developed. First, the RAUT tool attempted to automate the complicated steps of manually inputting CAD survey data and simulating the input data of the HEC-RAS one-dimensional model used in establishing the basic river plan in practice. Second, it is possible to directly read CAD survey data, which is river spatial information, and automatically upload it to the river spatial information DB based on the standard data model (ArcRiver), enabling the management of river survey data in the river maintenance plan at the national level. In other words, if RIMGIS uses a tool such as RAUT, it will be able to systematically manage national river survey data such as river section. The developed RAUT reads the river spatial information CAD data of the river maintenance master plan targeting the Jeju-do agar basin, builds it into a mySQL-based spatial DB, and automatically generates topographic data for HEC-RAS one-dimensional simulation from the built DB. A pilot process was implemented.

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.