• 제목/요약/키워드: cosmology:observations

검색결과 78건 처리시간 0.028초

NEW PROBES OF INTERGALACTIC MAGNETIC FIELDS BY RADIOMETRY AND FARADAY ROTATION

  • KRONBERG PHILIPP P.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.343-347
    • /
    • 2004
  • The energy injection of galactic black holes (BH) into the intergalactic medium via extragalactic radio source jets and lobes is sufficient to magnetize the IGM in the filaments and walls of Large Scale Structure at < [B] > ${\~}0.l{\mu}G$ or more. It appears that this process of galaxy-IGM feedback is the primary source of IGM cosmic rays(CR) and magnetic field energy. Large scale gravitational infall energy serves to re-heat the intergalactic magnetoplasma in localities of space and time, maintaining or amplifying the IGM magnetic field, but this can be thought of as a secondary process. I briefly review observations that confirm IGM fields around this level, describe further Faraday rotation measurements in progress, and also the observational evidence that magnetic fields in galaxy systems around z=2 were approximately as strong then, ${\~}$10 Gyr ago, as now.

OBSERVING MAGNETIC FIELDS ON LARGE SCALES

  • RUDNICK LAWRENCE
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.329-335
    • /
    • 2004
  • Observations of magnetic fields on scales up to several Mpc are important for understanding cluster and large-scale structure evolution. Our current census of such structures is heavily biased - towards fields of several $\mu$G, towards fields in deep potential wells, and towards high inferred field strengths m cooling flow and other clusters from improper analysis of rotation measure data. After reviewing these biases, I show some recent results on two relics that are powered in very different ways. I describe new investigations that are now uncovering weak diffuse fields in the outskirts of clusters and other low density environments, and the good prospects for further progress.

GALAXY EVOLUTION IN DISTANT UNIVERSE

  • IM MVUNGSHIN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.135-140
    • /
    • 2005
  • This paper summarizes the recent progress made by our group at Seoul National University on studies of the evolution and formation of distant galaxies. Various research projects are currently underway, which include: (i) the number density of distant early-type galaxies (z < 1); (ii) the optical-NIR color gradient of nearby early-type galaxies; (iii) J - K-selected Extremely Red Objects (EROs) in field (CDF-S) and the cluster environment; and (iv) the Lyman-break galaxies in the Spitzer First Look Survey (FLS) field. These works will constrain the mass evolution and the star formation history of galaxies in different environments, and the results will serve as useful contraints on galaxy formation models.

SIMULATION OF COSMIC MICROWAVE BACKGROUND POLARIZATION FIELDS FOR AMiBA EXPERIMENT

  • PARK CHAN-GYUNG;PARK CHANGBOM
    • 천문학회지
    • /
    • 제35권2호
    • /
    • pp.67-73
    • /
    • 2002
  • We have made a topological study of cosmic microwave background (CMB) polarization maps by simulating the AMiBA experiment results. A ACDM CMB sky is adopted to make mock interferometric observations designed for the AMiBA experiment. CMB polarization fields are reconstructed from the AMiBA mock visibility data using the maximum entropy method. We have also considered effects of Galactic foregrounds on the CMB polarization fields. The genus statistic is calculated from the simulated Q and U polarization maps, where Q and U are Stokes parameters. Our study shows that the Galactic foreground emission, even at low Galactic latitude, is expected to have small effects on the CMB polarization field. Increasing survey area and integration time is essential to detect non-Gaussian signals of cosmological origin through genus measurement.

STRONG GRAVITATIONAL LENSES AND MULTI-WAVELENGTH GALAXY SURVEYS WITH AKARI, HERSCHEL, SPICA AND EUCLID

  • Serjeant, Stephen
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.251-255
    • /
    • 2017
  • Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

Understanding our Universe with the REFLEX II cluster survey

  • Chon, Gayoung
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.41.1-41.1
    • /
    • 2014
  • Clusters of galaxies provide unique laboratories to study astrophysical processes on large scales, and are also important probes for cosmology. X-ray observations are still the best way to find and characterise clusters. The extended ROSAT-ESO flux-limited X-ray (REFLEX II) galaxy clusters form currently the largest well-defined and tested X-ray galaxy cluster sample, providing a census of the large-scale structure of the Universe out to redshifts of z-0.4. I will describe the properties of the survey and the X-ray luminosity function, which led to our recent cosmological constraints on omegaM-sigma8. They tighten the previous constraints from other X-ray experiments, showing good agreements with those from the Planck clusters, but some tension exists with the Planck CMB constraints. The second part of my talk will concern the structure of the local Universe, and the study of the first X-ray superclusters. The density of the clusters reveals an under-dense region in the nearby Universe, which has an interesting implication for the cosmological parameters. Using the X-ray superclusters, that are constructed with a physically motivated procedure, I will show environmental aspects that X-ray superclusters provide, and compare to cosmological N-body simulations.

  • PDF

On the spatial distribution of satellite galaxies around Milky-way-like galaxies in cosmological simulations

  • Kim, Seoneui;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.72.3-73
    • /
    • 2017
  • The spatial distribution of sub-halos in a large host halo is usually described as isotropic in the ${\Lambda}CDM$ cosmology. Recent observations, however, show that satellite galaxies around massive galaxies are often located within a preferred plane. In order to understand the origin of such planar alignment, we investigate the spatial distribution of sub-halos around their hosts by using the hydrodynamic cosmological simulation, Illustris. In particular, we analyze the systems resembling the Milky Way (MW) and its satellites, i.e. consisting of MW-sized central galaxy and its at least 11 satellites. The result shows that ~10 % of MW-like systems have the anisotropic satellite galaxy distribution at z = 0. The satellites that are accreted more recently tend to form a flattened structure more frequently, indicating a link of satellite distribution to the surrounding environment. We discuss the physical origin of the anisotropic satellite distribution from the viewpoint of the ${\Lambda}CDM$ paradigm.

  • PDF

다양한 고적색편이 별탄생 모형에 따른 우주 재이온화 역사의 변이 (HOW MODEL VARIANCE IN HIGH-REDSHIFT STAR FORMATION SHAPES COSMIC REIONIZATION HISTORY)

  • 안경진
    • 천문학논총
    • /
    • 제34권3호
    • /
    • pp.67-79
    • /
    • 2019
  • We present a semi-analytical method to calculate the global evolution of the ionized state of the intergalactic medium, on the basis of physically motivated star formation histories in the early universe. This method incorporates not only the conventional scenarios in which the star formation rate is proportional to the growth rate of the halo collapse fraction, but also the more sophisticated scenarios in which the star formation is self-regulated. We show that this variance in the star-formation model strongly impacts the resulting reionization history, which bears a prospect for observational discrimination of these models. We discuss how observations of the anisotropic polarization of the cosmic microwave background and the global 21cm signal from the high-redshift universe, most notably by Planck and EDGES, may probe the history of reionization.

Estimating dark matter mass for the most massive high-z galaxy cluster, SPT-CL J2106-5844 using weak-lensing analysis with HST observations

  • Kim, Jinhyub;Jee, Myungkook James;Ko, Jongwan
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.67.2-67.2
    • /
    • 2016
  • SPT-CL J2106-5844 is known to be one of the most massive galaxy clusters ($M_{200}{\sim}1.27{\times}10^{15}M_{sun}$) ever found at z > 1. Given its redshift (z ~ 1.132), the mass of this cluster estimated by Sunyaev-Zel'dovich effect and X-ray observation is too large compared with the current ${\Lambda}CDM$ cosmology prediction. Mass estimation from these methods can be biased because they require assumptions on hydrostatic equilibrium, which are not guaranteed to hold at such high redshift (about 40% of the current age of the Universe). Thus, we need to verify the mass of this interesting cluster using gravitational lensing, which does not require such assumptions. In this work, we present our preliminary result of dark matter mass and its spatial mass distribution of SPT-CL J2106-5844 using weak-lensing analysis based on HST optical/NIR deep imaging data. We compare mass estimates from different sources and discuss cosmological implications.

  • PDF

Recent progress in dark energy research

  • Park, Chan-Gyung
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.32.1-32.1
    • /
    • 2014
  • Astronomical observations strongly suggest that the expansion rate of our universe is currently under acceleration. The nature of the so-called dark energy causing the acceleration is unknown, and it is one of the fundamental mysteries in the present day theoretical cosmology. Here we briefly review the current state of cosmic dark energy research in both theoretical and observational sides. Constraints on dynamical dark energy models (e.g., w-fluid, quintessence, and modified gravity) with recent observational data from type Ia supernovae, cosmic microwave background radiation, and large-scale structures in the universe indicate a preferred direction toward the simplest ${\Lambda}$CDM world model. We also discuss some issues regarding the early dark energy model and the spherical collapse of matter in the presence of dark energy.

  • PDF