• Title/Summary/Keyword: cosmology:observations

Search Result 78, Processing Time 0.02 seconds

COSMOLOGICAL APPLICATIONS OF MULTIPLY IMAGED GRAVITATIONAL LENS SYSTEMS

  • PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.97-103
    • /
    • 2003
  • We now have more than 70 multiple image gravitational lens systems. Since gravitational lensing occurs through gravitational distortions in cosmic space, cosmological informations can be extracted from multiple image systems. Specifically, Hubble constant can be determined by the time delay mea-surement, curvature of the universe can be measured by the distribution of image separations in lens systems, and limits on matter density and cosmological constant can be set by the statistics of gravitationallens systems. Uncertainties, however, still exist in various steps, and results may be taken with some caution. Larger systematic survey and better understanding of galaxy properties would definitely help.

MASSIVE STRUCTURES OF GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY FIELDS

  • Kang, Eugene;Im, Myungshin
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.1
    • /
    • pp.21-55
    • /
    • 2015
  • If the Universe is dominated by cold dark matter and dark energy as in the currently popular ${\Lambda}CDM$ cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass $M{\geq}10^{14}M_{\odot}$ appearing at around 6 Gyrs after the Big Bang (z ~ 1). Here, we report the discovery of 59 massive structures of galaxies with masses greater than a few times $10^{13}M_{\odot}$ at redshifts between z = 0.6 and 4.5 in the Great Observatories Origins Deep Survey fields. The massive structures are identified by running top-hat filters on the two dimensional spatial distribution of magnitude-limited samples of galaxies using a combination of spectroscopic and photometric redshifts. We analyze the Millennium simulation data in a similar way to the analysis of the observational data in order to test the ${\Lambda}CDM$ cosmology. We find that there are too many massive structures (M > $7{\times}10^{13}M_{\odot}$) observed at z > 2 in comparison with the simulation predictions by a factor of a few, giving a probability of < 1/2500 of the observed data being consistent with the simulation. Our result suggests that massive structures have emerged early, but the reason for the discrepancy with the simulation is unclear. It could be due to the limitation of the simulation such as the lack of key, unrecognized ingredients (strong non-Gaussianity or other baryonic physics), or simply a difficulty in the halo mass estimation from observation, or a fundamental problem of the ${\Lambda}CDM$ cosmology. On the other hand, the over-abundance of massive structures at high redshifts does not favor heavy neutrino mass of ~ 0.3 eV or larger, as heavy neutrinos make the discrepancy between the observation and the simulation more pronounced by a factor of 3 or more.

FUTURE SPACE INFRARED TELESCOPE MISSION, SPICA

  • MATSUMOTO TOSHIO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.89-91
    • /
    • 2005
  • SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is an infrared astronomical satellite with a 3.5 m cooled telescope which is very powerful in mid- and far- infrared observations and makes complementary role to JWST and Herschel. SPICA will be launched at ambient temperature without any cryogen into the Sun-Earth L2 orbit and cooled down in space to 4.5 K with use of efficient radiative cooling and mechanical coolers. The present status of SPICA and the developments of the satellite system are reported.

Submillimeter Galaxies and Their Environments

  • Kim, Kihun;Kim, Sungeun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.51.1-51.1
    • /
    • 2013
  • Submillimeter galaxies are the progenitors of massive galaxy formation, and therefore their interaction with the early intergalactic medium must be an important subject in the cosmology and galaxy astrophysics. However, their detailed relation between the galaxies and surrounding environments is still largely unknown. In this poster, we will present the characteristics of their surrounding environments of a large sample of mm-detected submillimeter galaxies. We will also discuss the proposal for the future observations of these galaxies and their environments using the ALMA and the GMT.

  • PDF

The realm of the ultra-low surface brightness universe

  • Valls-Gabaud, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.27.3-27.3
    • /
    • 2017
  • One of the major discoveries in extragalactic astrophysics made over the past few years is the detection of ultra-diffuse galaxies, a new type of galaxies which appear to be far more numerous than normal galaxies, and which are giants in terms of size, yet dwarfs in terms of luminosity. These galaxies point to the huge discovery potential of the last niche that remains to be explored in observational parameter space: the sky at extremelylow surface brightness. Implications for objects in the Solar System, stellar physics, the interstellar medium, galaxies and cosmology will be addressed, along with the major challenges for pushing the frontiers in ground- and space-based observations.

  • PDF

A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR

  • ADE, P.A.R.;AKIBA, Y.;ANTHONY, A.E.;ARNOLD, K.;ATLAS, M.;BARRON, D.;BOETTGER, D.;BORRILL, J.;CHAPMAN, S.;CHINONE, Y.;DOBBS, M.;ELLEFLOT, T.;ERRARD, J.;FABBIAN, G.;FENG, C.;FLANIGAN, D.;GILBERT, A.;GRAINGER, W.;HALVERSON, N.W.;HASEGAWA, M.;HATTORI, K.;HAZUMI, M.;HOLZAPFEL, W.L.;HORI, Y.;HOWARD, J.;HYLAND, P.;INOUE, Y.;JAEHNIG, G.C.;JAFFE, A.H.;KEATING, B.;KERMISH, Z.;KESKITALO, R.;KISNER, T.;JEUNE, M. LE;LEE, A.T.;LEITCH, E.M.;LINDER, E.;LUNGU, M.;MATSUDA, F.;MATSUMURA, T.;MENG, X.;MILLER, N.J.;MORII, H.;MOYERMAN, S.;MYERS, M.J.;NAVAROLI, M.;NISHINO, H.;ORLANDO, A.;PAAR, H.;PELOTON, J.;POLETTI, D.;QUEALY, E.;REBEIZ, G.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.625-628
    • /
    • 2015
  • POLARBEAR is a ground-based experiment located in the Atacama desert of northern Chile. The experiment is designed to measure the Cosmic Microwave Background B-mode polarization at several arcminute resolution. The CMB B-mode polarization on degree angular scales is a unique signature of primordial gravitational waves from cosmic inflation and B-mode signal on sub-degree scales is induced by the gravitational lensing from large-scale structure. Science observations began in early 2012 with an array of 1.274 polarization sensitive antenna-couple Transition Edge Sensor (TES) bolometers at 150 GHz. We published the first CMB-only measurement of the B-mode polarization on sub-degree scales induced by gravitational lensing in December 2013 followed by the first measurement of the B-mode power spectrum on those scales in March 2014. In this proceedings, we review the physics of CMB B-modes and then describe the Polarbear experiment, observations, and recent results.

FINDING COSMIC SHOCKS: SYNTHETIC X-RAY ANALYSIS OF A COSMOLOGICAL SIMULATION

  • HALLMAN ERIC J.;RYU DONGSU;KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.593-596
    • /
    • 2004
  • We introduce a method of identifying evidence of shocks in the X-ray emitting gas in clusters of galaxies. Using information from synthetic observations of simulated clusters, we do a blind search of the synthetic image plane. The locations of likely shocks found using this method closely match those of shocks identified in the simulation hydrodynamic data. Though this method assumes nothing about the geometry of the shocks, the general distribution of shocks as a function of Mach number in the cluster hydrodynamic data can be extracted via this method. Characterization of the cluster shock distribution is critical to understanding production of cosmic rays in clusters and the use of shocks as dynamical tracers.

ASCA X-RAY OBSERVATIONS OF TWO CONTACT BINARIES: SW LACERTAE AND W URSAE MAJORIS

  • Choi, C.S.;Nam, U.W.;Kim, Y.
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 1997
  • We present X-ray light curves and the energy spectra for two contact binaries SW Lac and W UMa, which are obtained from the ASCA(Advanced Satellite for Cosmology and Astrophysics) observations. We find that both sources show appreciable flux variations during the observatoins, and the variations are erratic and are not orbital-phase dependent. From a spectral analysis, we also find that the W UMa spectrum can be reproduced by a variable-abundance plasma model with a single temperature of $T_1=6.8{\times}10^6K$, while the SW Lac spectrum requires two different temperatures $T_1=6.5{\times}10^6K$ and $T_2=1.4{\times}10^7K$.

  • PDF

Multi-Messenger Astronomy with GECKO, Gravitational-wave EM Counterpart Korean Observatory - Past, Present, and Future

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.3-35.3
    • /
    • 2019
  • The new era of multi-messenger astronomy (MMA) has arrived in 2017 with the detection of the binary neutron star merger in both gravitational wave (GW) and electromagnetic radiation (EM). Now, the new run of GW detectors are providing numerous GW events and the number GW events are expected to increase dramatically in future as the GW sensitivities improve. When the GW studies are combined with EM counterpart observations, a great synergy is expected in many areas of study such as the physical process following the compact object merger, the environment of such events (and galaxy evolution), and cosmology, Therefore, it has now become crucial to identify and characterize these GW events in optical/IR EM. In the past, we have been performing optical/NIR observation of GW events using a worldwide network of more than 10 telescopes, and are getting more actively involved in MMA of GW sources. In this talk, we will present our network of telescopes, the EM follow-up observation results of GW events including GW170817 and the O3 events in 2019, and the current issues in MMA. We will also give the future prospects of MMA, showing the forecast for the GW events and the outlook of EM MMA observations.

  • PDF

Accurate application of Gaussian process regression for cosmology

  • Hwang, Seung-gyu;L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2021
  • Gaussian process regression (GPR) is a powerful method used for model-independent analysis of cosmological observations. In GPR, it is important to decide an input mean function and hyperparameters that affect the reconstruction results. Depending on how the input mean function and hyperparameters are determined in the literature, I divide into four main applications for GPR and compare their results. In particular, a zero mean function is commonly used as an input mean function, which may be inappropriate for reconstructing cosmological observations such as the distance modulus. Using mock data based on Pantheon compilation of type Ia supernovae, I will point out the problem of using a zero input and suggest a new way to deal with the input mean function.

  • PDF