• Title/Summary/Keyword: cosmology: observations-galaxies: structure

Search Result 12, Processing Time 0.017 seconds

On the spatial distribution of satellite galaxies around Milky-way-like galaxies in cosmological simulations

  • Kim, Seoneui;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.72.3-73
    • /
    • 2017
  • The spatial distribution of sub-halos in a large host halo is usually described as isotropic in the ${\Lambda}CDM$ cosmology. Recent observations, however, show that satellite galaxies around massive galaxies are often located within a preferred plane. In order to understand the origin of such planar alignment, we investigate the spatial distribution of sub-halos around their hosts by using the hydrodynamic cosmological simulation, Illustris. In particular, we analyze the systems resembling the Milky Way (MW) and its satellites, i.e. consisting of MW-sized central galaxy and its at least 11 satellites. The result shows that ~10 % of MW-like systems have the anisotropic satellite galaxy distribution at z = 0. The satellites that are accreted more recently tend to form a flattened structure more frequently, indicating a link of satellite distribution to the surrounding environment. We discuss the physical origin of the anisotropic satellite distribution from the viewpoint of the ${\Lambda}CDM$ paradigm.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

GALAXY FORMATION IN THE HUBBLE DEEP FIELD

  • PARK CHANGBOM;KIM JU HAN
    • Journal of The Korean Astronomical Society
    • /
    • v.30 no.1
    • /
    • pp.83-94
    • /
    • 1997
  • We have identified the candidates for the primordial galaxies in the process of formation in the Hubble Deep Field (hereafter HDF). In order to select these objects we have removed objects brighter than 29-th magnitude in the HDF images and smoothed the maps with the Gaussian filters with the FWHM of 0.8' and 4' to obtain the difference maps. This has enabled us to find. very faint diffuse structures close to the sky level. Peaks are identified in the difference map for each of three HDF chips with three filters (F450W, F606W, and F814W). They have the apparent AB magnitudes typically between 29 and 31. The objects identified in different wavelengths filters have a strong cross-correlations. The correlation lengths are about 0.8'. This means that an object found in one filter can be also found as a peak within 0.8' separation in another filter, thus telling the reality of the identified objects. This angular scale is also the size of the primordial galaxies which have strong color fluctuations on their surfaces. Their large-scale distribution quite resembles that of nearby galaxies, supporting the idea that these objects are ancestors of the present bright galaxies forming at statistically high density regions. Inspections on individual objects show that these primordial galaxy candidates have tiny multiple glares embedded in diffuse backgrounds. Their radial light distributions are quite different from that of nearby bright galaxies. We may be now looking at the epoch of galaxy formation.

  • PDF

X-RAY STUDIES OF THE INTRACLUSTER MEDIUM IN CLUSTERS OF GALAXIES - CHARACTERIZING GALAXY CLUSTERS AS GIANT LABORATORIES

  • BOHRINGER HANS
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.361-369
    • /
    • 2004
  • Galaxy clusters as the densest and most prominent regions within the large-scale structure can be used as well characterizable laboratories to study astrophysical processes on the largest scales. X-ray observations provide currently the best way to determine the physical properties of galaxy clusters and the environmental parameters that describe them as laboratories. We illustrate this use of galaxy clusters and the precision of our understanding of them as laboratory environments with several examples. Their application to determine the matter composition of the Universe shows good agreement with results from other methods and is therefore a good test of our understanding. We test the reliability of mass measurements and illustrate the use of X-ray diagnostics to study the dynamical state of clusters. We discuss further studies on turbulence in the cluster ICM, the interaction of central AGN with the radiatively cooling plasma in cluster cooling cores and the lessons learned from the ICM enrichment by heavy elements.

FINDING COSMIC SHOCKS: SYNTHETIC X-RAY ANALYSIS OF A COSMOLOGICAL SIMULATION

  • HALLMAN ERIC J.;RYU DONGSU;KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.593-596
    • /
    • 2004
  • We introduce a method of identifying evidence of shocks in the X-ray emitting gas in clusters of galaxies. Using information from synthetic observations of simulated clusters, we do a blind search of the synthetic image plane. The locations of likely shocks found using this method closely match those of shocks identified in the simulation hydrodynamic data. Though this method assumes nothing about the geometry of the shocks, the general distribution of shocks as a function of Mach number in the cluster hydrodynamic data can be extracted via this method. Characterization of the cluster shock distribution is critical to understanding production of cosmic rays in clusters and the use of shocks as dynamical tracers.

NONTHERMAL COMPONENTS IN THE LARGE SCALE STRUCTURE

  • MINIATI FRANCESCO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.465-470
    • /
    • 2004
  • I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to $\gamma$-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of $\gamma$-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

OBSERVING MAGNETIC FIELDS ON LARGE SCALES

  • RUDNICK LAWRENCE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.329-335
    • /
    • 2004
  • Observations of magnetic fields on scales up to several Mpc are important for understanding cluster and large-scale structure evolution. Our current census of such structures is heavily biased - towards fields of several $\mu$G, towards fields in deep potential wells, and towards high inferred field strengths m cooling flow and other clusters from improper analysis of rotation measure data. After reviewing these biases, I show some recent results on two relics that are powered in very different ways. I describe new investigations that are now uncovering weak diffuse fields in the outskirts of clusters and other low density environments, and the good prospects for further progress.

Understanding our Universe with the REFLEX II cluster survey

  • Chon, Gayoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2014
  • Clusters of galaxies provide unique laboratories to study astrophysical processes on large scales, and are also important probes for cosmology. X-ray observations are still the best way to find and characterise clusters. The extended ROSAT-ESO flux-limited X-ray (REFLEX II) galaxy clusters form currently the largest well-defined and tested X-ray galaxy cluster sample, providing a census of the large-scale structure of the Universe out to redshifts of z-0.4. I will describe the properties of the survey and the X-ray luminosity function, which led to our recent cosmological constraints on omegaM-sigma8. They tighten the previous constraints from other X-ray experiments, showing good agreements with those from the Planck clusters, but some tension exists with the Planck CMB constraints. The second part of my talk will concern the structure of the local Universe, and the study of the first X-ray superclusters. The density of the clusters reveals an under-dense region in the nearby Universe, which has an interesting implication for the cosmological parameters. Using the X-ray superclusters, that are constructed with a physically motivated procedure, I will show environmental aspects that X-ray superclusters provide, and compare to cosmological N-body simulations.

  • PDF

AKARI OBSERVATION OF THE FLUCTUATION OF THE NEAR-INFRARED BACKGROUND

  • Matsumoto, T.;Seo, H.J.;Jeong, W.S.;Lee, H.M.;Matsuura, S.;Matsuhara, H.;Oyabu, S.;Pyo, J.;Wada, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.363-365
    • /
    • 2012
  • We report a search for fluctuations of the sky brightness toward the North Ecliptic Pole with AKARI, at 2.4, 3.2, and $4.1{\mu}m$. The stacked images with a diameter of 10 arcminutes of the AKARI-Monitor Field show a spatial structure on the scale of a few hundred arcseconds. A power spectrum analysis shows that there is a significant excess fluctuation at angular scales larger than 100 arcseconds that cannot be explained by zodiacal light, diffuse Galactic light, shot noise of faint galaxies, or clustering of low-redshift galaxies. These findings indicate that the detected fluctuation could be attributed to the first stars of the universe, i.e., Population III stars.

HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE

  • KIM, JUHAN;PARK, CHANGBOM;L'HUILLIER, BENJAMIN;HONG, SUNGWOOK E.
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.4
    • /
    • pp.213-228
    • /
    • 2015
  • The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.