• Title/Summary/Keyword: cosine function

Search Result 148, Processing Time 0.027 seconds

Centralized Clustering Routing Based on Improved Sine Cosine Algorithm and Energy Balance in WSNs

  • Xiaoling, Guo;Xinghua, Sun;Ling, Li;Renjie, Wu;Meng, Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.17-32
    • /
    • 2023
  • Centralized hierarchical routing protocols are often used to solve the problems of uneven energy consumption and short network life in wireless sensor networks (WSNs). Clustering and cluster head election have become the focuses of WSNs. In this paper, an energy balanced clustering routing algorithm optimized by sine cosine algorithm (SCA) is proposed. Firstly, optimal cluster head number per round is determined according to surviving node, and the candidate cluster head set is formed by selecting high-energy node. Secondly, a random population with a certain scale is constructed to represent a group of cluster head selection scheme, and fitness function is designed according to inter-cluster distance. Thirdly, the SCA algorithm is improved by using monotone decreasing convex function, and then a certain number of iterations are carried out to select a group of individuals with the minimum fitness function value. From simulation experiments, the process from the first death node to 80% only needs about 30 rounds. This improved algorithm balances the energy consumption among nodes and avoids premature death of some nodes. And it greatly improves the energy utilization and extends the effective life of the whole network.

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.

Blind Frequency offset Estimation for Radio Resource Saving in OFDM (OFDM에서 무선자원 절약을 위한 블라인드 주파수 옵셋 추정 방식)

  • Jeon, Hyoung-Goo;Kim, Kyoung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10C
    • /
    • pp.1001-1009
    • /
    • 2009
  • In this paper, an efficient blind frequency offset estimation method for radio resource saving in orthogonal frequency division multiplexing (OFDM) systems is proposed. In the proposed method, we obtain two time different received OFDM signal blocks by using the cyclic prefix and define the cost function by using the two OFDM signal blocks. We show that the cost function can be approximately expressed as a closed form cosine function. The approximated cosine function can be obtained from three independent cost function values calculated at three different frequency offsets. In the proposed method, the frequency offset can be estimated by calculating a frequency offset minimizing the approximated cosine function without searching all the frequency offset range. Unlike the conventional methods such as MUSIC method, the accuracy of the proposed method is independent of the searching resolution since the closed form solution exists. The computer simulation shows that the performance of the proposed method is superior to those of the MUSIC and the oversampling method.

Proposition of a new yaw function for the use of hot wire (열선에 사용되는 새로운 요각함수의 제안)

  • Kim, Jeong-Hun;Yu, Jeong-Yeol;Jo, Seong-Gwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 1998
  • Conventional yaw functions are compared with actual response of a hot wire to various yaw angles, and a new function is proposed, which can be applied at large yaw angles and low velocities. To compare the accuracy of the new yaw function with those of the conventional ones, measurements are made for the jet flow at the nozzle exit and at .chi./D=15 with an X hot-wire probe. In the potential core, the flow angles reduced by the present function, ideal angle method and full velocity-angle method are shown to be more accurate than those reduced by the cosine function and Hinze's formula. No matter which yaw functions are used, the profiles of mean velocity and turbulence intensity show little discrepancy at .chi./D=15. However, there is a significant difference between the probability density functions obtained by the present function, ideal angle method and full velocity-angle method and those obtained by the cosine function and Hinze's formula.

A Study on the Position Control Improvement of Flexible Robot Arm by Inverse Dynamics (역학을 이용한 탄성 로보트 아암의 선단 위치 제어 기어에 대한 연구)

  • 방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.9-13
    • /
    • 1997
  • This parer is a study on the inverse dynamics of a one-link flexible robot arm which is controlled by translational base motion. The system is composed of a flexible arm, a base for driving arm, a DC servomotor, and a computer. The arm base is moved so that the arm tip follows a desired function. The governing equations are based on the Bernoullie-Euler beam theory and solved by applying the Laplace transform method and then the numerical inversion method. Moter voltage is obtained by simulation for tip trajectory functions i. e. Bang-Bang, Cosine and Gauss Function. And, the tip motion is measured while simulation results are applying. Then the results are investigated to select most proper input and to compare their chateristics. Experimental results show the Cosine function is most proper with respect to low maximum voltage and steady state error.

  • PDF

Generalizations of Ramanujan's Integral Associated with Infinite Fourier Cosine Transforms in Terms of Hypergeometric Functions and its Applications

  • Qureshi, Mohammad Idris;Dar, Showkat Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.781-795
    • /
    • 2020
  • In this paper, we obtain an analytical solution for an unsolved definite integral RC (m, n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using the hypergeometric approach and an infinite series decomposition identity. Also, we give some generalizations of Ramanujan's integral RC (m, n) defined in terms of the ordinary hypergeometric function 2F3 with suitable convergence conditions. Moreover as applications of our result we obtain nine new infinite summation formulas associated with the hypergeometric functions 0F1, 1F2 and 2F3.

A New Metric for Joint Effective Width Computation (새로운 결합유효폭 측정법)

  • Lee, Jeok-Sik
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.565-572
    • /
    • 2001
  • Analyzing functions with small values of the product of position and frequency uncertainties have many advantages in image processing and data compression. Until now, this values has been computed based on the uncertainty principle, but the computed frequency uncertainty is not practical the human visual filters which have on-zero peak response frequencies. A new metric for the frequency uncertainty is used to calculate a deviation about the frequency which has maximum response. The joint effective widths for various functions are derived. As the result of analysis, the joint uncertainty for many functions converges to 0.5 as the joint parameter increases. Furthermore. Gabor cosine function shows an excellent performance among the mentioned functions.

  • PDF

Basis Function Truncation Effect of the Gabor Cosine and Sine Transform (Gabor 코사인과 사인 변환의 기저함수 절단 효과)

  • Lee, Juck-Sik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.303-308
    • /
    • 2004
  • The Gabor cosine and sine transform can be applied to image and video compression algorithm by representing image frequency components locally The computational complexity of forward and inverse matrix transforms used in the compression and decompression requires O($N^3$)operations. In this paper, the length of basis functions is truncated to produce a sparse basis matrix, and the computational burden of transforms reduces to deal with image compression and reconstruction in a real-time processing. As the length of basis functions is decreased, the truncation effects to the energy of basis functions are examined and the change in various Qualify measures is evaluated. Experiment results show that 11 times fewer multiplication/addition operations are achieved with less than 1% performance change.

Quantitative Measure of the Changes of Migration Patterns Using Cosine Similarity (코사인 유사도를 이용한 이주패턴 변화의 정량적 측정)

  • Han, Yicheol
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Migration is defined as the movement of people between residential places, and represents interactions between regions. Changes in migration involve changes in both the number of migrants toward/from regions and migration patterns across regions. However, most migration studies have focused only on the change in migrants, while no empirical study captures changes in migration patterns. In this paper, I present a function using the cosine similarity to measure changes in migration patterns, and apply it to 2001-2016 migration data of Korea. The results show that the migration patterns of Korea shifted in 2007, resulting in two distinct clusters. Local areas experienced various migration pattern changes despite few changes in the number of migrants.

Arbitrary image scaling using a cosine-modulated filter bank with CSSF based sampling kernels (이미지의 임의의 스케일링을 위한 CSSF 샘플링 커널 기반의 cosine modulated 필터뱅크)

  • Kim, Jin-Young;Park, Ki-Seop;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.107-108
    • /
    • 2007
  • In this paper, a cosine-modulated filter bank with a modified synthesis part is proposed for arbitrary scaling of images, whereby down/up-sampling kernels based on a compactly supported sampling function (CSSF) are utilized. Also, an optimized adaptive interpolation technique is incorporated into the filter bank structure to compensate for quality degradation arising in scaled images. Finally, simulation results verify that high quality images with arbitrary sizes can be obtained by applying the proposed approach.

  • PDF