• Title/Summary/Keyword: corrugated fiberboard container

Search Result 16, Processing Time 0.018 seconds

Durability of Corrugated Fiberboard Container for Fruit and Vegetables by Vibration Fatigue at Simulated Transportation Environment (모의 수송 환경에서의 청과물 골판지 상자의 진동 피로에 따른 내구성)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.89-94
    • /
    • 2005
  • The compression strength of corrugated fiberboard container for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about from 30 to 40 percent owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard container for packaging the fruit and vegetables under simulated transportation environment. The vibration test system was constructed to simulate the land transportation using truck. After the package with corrugated fiberboard container was vibrated by vibration test system at various experimental conditions, the compression test for the package was performed. The compression strength of corrugated fiberboard container decreased with loading weight and vibrating time. The multiple nonlinear regression equation for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibrating time. The influence of loading weight on the decreasing rate of corrugated fiberboard container was larger than other variables.

Effects of Vibration Fatigue on Compression Strength of Corrugated Fiberboard Containers for Packaging of Fruits during Transport

  • Jung, Hyun-Mo;Park, Jeong-Gil
    • Journal of Biosystems Engineering
    • /
    • v.37 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • Purpose: The compression strength of corrugated fiberboard containers used to package agricultural products rapidly decreases owing to various environmental factors encountered during the distribution of unitized products. The main factors affecting compression strength are moisture absorption, long-term top load, and fatigue caused by shock and vibration during transport. This study characterized the durability of corrugated fiberboard containers for packaging fruits and vegetables under simulated transportation conditions. Methods: Compression tests were done after corrugated fiberboard containers containing fruit were vibrated by an electro-dynamic vibration test system using the power spectral density of routes typically traveled to transport fruits and vegetables in South Korea. Results: To predict loss of compression strength owing to vibration fatigue, a multiple nonlinear regression equation ($r^2=0.9217$, $RMSE=0.6347$) was developed using three independent variables of initial container compression strength, namely top stacked weight, loading weight, and vibration time. To test the applicability of our model, we compared our experimental results with those obtained during a road test in which peaches were transported in corrugated containers. Conclusions: The comparison revealed a highly significant ($p{\leq}0.05$) relationship between the experimental and road-test results.

Effects of Sinusoidal Vibration Fatigue on Compression Strength of Corrugated Fiberboard Container for Packaging of Fruits

  • Jung, Hyun-Mo;Kim, Jong-Kyoung;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • The compression strength of corrugated fiberboard containers for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about 30~40% owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard containers for packaging the fruits and vegetables under simulated transportation environment. After the packaging freight was vibrated at various experimental conditions, the compression test for the packaging was performed. The compression strength of corrugated fiberboard containers decreased with loading weight and vibration time. The multiple nonlinear regression equation ($R^2$ = 0.9198) for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibration time.

  • PDF

Effect of Relative Humidity and Temperature on the Compression Strength of Corrugated Boxes on Distribution Channel (유통중 온습도 변화에 따른 골판지 상자의 압축강도에 대한 연구)

  • 이명훈;김종경
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • In order to design the high strength corrugated fiberboard containers for agricultural products that can be used for the cold chain system, a large number of individual boxes were placed in various humidity environments at two different temperature of 5 and $20^{\circ}C$. The results indicated that temperature changes do not effect on physical strength of corrugated fiberboard containers as much as humidity changes did. The main conclusion from this study was that compression strength of corrugated fiberboard containers dropped significantly at high humidity condition, but the rates varied depending on the number of walls, temperature, and perimeter of containers. The packaging designer must consider the corrugated fiberboard boxes are also greatly affected by dimensional variations such as the length versus width ratio. Based on this study, water-resistant board would not be necessary if the ambient relative humidity does not reach to a critical point, 85 percent in the cold chain system. However, the designer must count for the unexpected fluctuation of rotative humidity resulting in severe loss of the compression strength of corrugated fiberboard container.

Standardization of Safety Factors of Corrugated Fiberboard Containers for Selected Agricultural Products (과채류 포장용 골판지 상자의 안전계수 표준화)

  • Seong, Haeng-Ki;Kim, Young-Chul;Hwang, Dae-Sung;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.115-127
    • /
    • 2011
  • The aim of this study was to develop a standard to estimate safety factors of corrugated fiberboard containers used for agricultural products. This study is limited to fresh agricultural products packaged in the corrugated fiberboard containers and further work needs to be done, but we believe the data and results obtained by this research will greatly help to set proper package design for boxes. Especially, safety factor would be practically helpful for researchers for future study and packaging users to save packaging costs.

Vibration Analysis of Pears in Packaged Freight Using Finite Element Method (유한요소법을 이용한 골판지 포장화물내 배의 진동해석)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.501-507
    • /
    • 2004
  • Fruits we subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonant frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The vibration characteristics of the pears in corrugated fiberboard container in transit were analyzed using FEM (finite element method) modeling, and the FEM modeling approach was first validated by comparing the results obtained from simulation and experiment for the pear in the frequency range 3 to 150 Hz and acceleration level of 0.25 G-rms and it was found that between simulated and measured frequencies of the pears have a relatively good agreement. It was observed that the fruit and vegetables in corrugated fiberboard container could be analyzed by finite element method. As the elastic modulus of the cushion materials of corrugated fiberboard pad and tray cup decreased, the first frequencies of upper and lower pears increased and the peak acceleration decreased.

Strength Optimization of Ventilating Container(II)-Finite Element Analysis (통기성 상자 구조물의 강도적 최적화 연구(II)-유한요소해석)

  • Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2001
  • Corrugated board is composed of cellulose fibers which are arranged with the same direction as the board manufactured. The direction is classified with machine direction (MD) and cross-machine direction (CD). Therefore, corrugated board is orthotropic material that has totally different strength properties at each direction and especially, at machine direction, the mechanical properties of fiberboard is superior. The compression strength of the corrugated fiberboard boxes is very important information to the manufacturers and the end users. This study was carried out to design the optimum pattern, size, and location of ventilating hole for ventilating container through the finite element analysis. The optimum pattern and location of ventilating and hand hole were vertical oblong, a short distance to the right and left from the center of panel, and center or a short distance to the top of both sides, respectively. We identified the effect on both stress dispersion and stress level from the analysis of redisigned hand hole.

  • PDF

Improvement of Thickness in White Duplex Board by Utilization of Defibrated Fibers (1) - Utilization of Defibrated Fibers - (백판지의 두께 증대를 위한 목질섬유의 이용 (1) - 목질섬유의 이용 -)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.34-40
    • /
    • 2014
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers and the old corrugated container (OCC) furnish were refined, and mixed together to form paperboard. At optimum mixing ratios and refining degrees, stiffness and tensile strength of the MDF fiber-containing board were higher than those of the board with 100% OCC. It was found that there was possibility to reduced basis weight of the filler layer down to 90% of the all OCC furnish by judicious selection of the mixing ratio and the refining method of the MDF fibers. Drainage rate increase and potential drying energy savings were additional benefits.

Improvement of Bending Stiffness in White Duplex Board by Utilization of Wood Fibers from Medium Density Fiberboard (2) Ozone treatment (백판지의 휨강성 증대를 위한 목질섬유의 이용 (2) 오존처리)

  • Seo, Yung Bum;Kim, Hyun Jun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Wood fibers for medium density fiberboard (MDF) was used in the filler layer of the white duplex board for increasing thickness and bulk of the board. The MDF fibers were treated with ozone (3% based on dry weight of the fibers), and mixed together with OCC (old corrugated container) to form paper. Ozone-treated MDF fibers gave high bulk, high tensile strength, high internal bond and fast drainage to the furnish mixed with OCC. It was shown that there were possibilities to reduced basis weight of the filler layer without loss of thickness, stiffness, and tensile strength. Furthermore, it showed the possibility to develop a new kind of board product that has high stiffness as well as high strength properties with light basis weight by application of the ozone-treated MDF fibers.