• Title/Summary/Keyword: corrosion-grade

Search Result 89, Processing Time 0.022 seconds

A comparative study on bond of different grade reinforcing steels in concrete under accelerated corrosion

  • Kurklu, G.;Baspinar, M.S.;Ergun, A.
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.229-242
    • /
    • 2013
  • Corrosion is important reason for the deterioration of the bond between reinforcing steel and the surrounding concrete. Corrosion of the steel mainly depends on its microstructure. Smooth S220, ribbed S420 and S500 grade reinforcing steels were used in the experiments. Samples were subjected to accelerated corrosion. Pullout tests were carried out to evaluate the effects of corrosion on bond strength of the specimens. S500 grade steel which has tempered martensite microstructure showed lower corrosion rate in concrete than S220 and S420 steels which have ferrite+perlite microstructure. S500 grade steel showed highest bond strength among the other steel grades in concrete. Bond strength between reinforcing steel and concrete increased with increase in the strength of steel and concrete. It also depends on whether reinforcing bar is ribbed or not.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

A Study of Annealing Heat-treatment for Ti(Grade 2) by Electrochemical Methods (전기화학적 방법을 이용한 Ti(Grade 2)재의 최적 어닐링 열처리에 대한 연구)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.90-98
    • /
    • 2002
  • In this paper, the annealing heat treatments for the best corrosion resistant of Ti(Grade 2) were studied in a 3.5% NaCl solution by electrochemical methods. The annealing heat treatments were accomplished at 650, 700 and $750^{\circ}C$ with different time of 30min., 1hour and 2 hours in a vacuum condition. The obtained results are: 1) in the case of solution heat treated $930^{\circ}C$ for 2 hours in a vacuum and air, the corrosion potentials were -348.7 and -567. 1mV, and current densities 2.32 and $22.62\mu\textrm{A}$, respectively, 2) as increase both annealing heat treatment temperature 650, 700, $750^{\circ}C$ and time 30min., 1 hour, 2 hours, the corrosion potential were decreased, whereas corrosion current density increased, 3) in the case of cyclic polarization, the measured charges were increased as increasing solution heat treatment temperature and time, 4) on the bases of corrosion potential, current density and charge, the best annealing temperature and time were measured as $700^{\circ}C$ and 30min. for Ti(Grade 2) material.

Analysis of Structural Safety for Rebar Exposure and Corrosion in PSC I-Girder Bridge Slab (PSC I형 교량 바닥판의 철근노출 및 부식에 대한 구조적 안전성 분석)

  • Han, Manseok;Park, Ju-Hyun;Lee, Jong-Han;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • This paper evaluated the structural safety of an aging PSC I-girder bridge with rebar corrosion in the deck. The geometry and rebar of the bridge were designed based on an actual PSC I-girder bridge, and the numerical analysis was performed considering the crack of concrete and yielding of steel rebar. According to the evaluation criteria of Korea Infrastructure Safety and Technology Corporation, this study defined two criteria of rebar exposure and corrosion rates to construct a total of 32 corrosion scenarios. Rebar exposure was defined as the exposure of tensile rebars in the bridge deck due to the removal of cover concrete. The results of the analysis showed that the safety and rating factors of the bridge decreased with increasing rebar exposure and corrosion rates. For the rebar corrosion rate more than 50%, the safety grade of the bridge should be carefully evaluated for all the rebar exposure rate. When the rebar corrosion rate exceeds 57%, the bridge was evaluated as E grade regardless of rebar exposure rate. A correlation analysis for a 2% of rebar exposure rate found that the bridge was evaluated as A grade up to 55.8% corrosion rate, C grade up to 56.9%, D grade up to 58.5%, and E grade for corrosion rate greater than 58.5%. This study indicates the necessity of a quantitative evaluation of rebar corrosion for evaluating the structural safety of aging bridges.

An Experimental Study on Steel Bar Corrosion of Reinforced Concrete Structure (철근콘크리트 구조물의 철근부식에 관한 실험 연구)

  • Chae, Young-Suk;Choi, Il-Yoon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.29-35
    • /
    • 2013
  • The purpose of this study is to investigate the steel bar corrosion and degree of reinforced concrete bridge, and analyze the cause of corrosion occurrence. Therefore they could ensure the durability and stability as to suggest the corrosion prevention of reinforced concrete structure. To study the corrosion state reinforced concrete structure, We investigate the cover of concrete, the compressive strength by schmidt hammer, the neutralization test of site, the compressive strength of core and the measurement of neutralized depth. As the results of test, the corrosion-grade of reinforced concrete structure which the degree of corrosion is 3, 4 degree get to 18% in the used time of 40 years and the time elapsed of 25 years. Therefore the corrosion of steel bar give rise to public discussion. The degree of corrosion is serious, and the neutralization come to the cover of concrete.

A Case Study on Chloride Corrosion for the End Zone of Concrete Deck Subjected to De-icing Salts Added Calcium Chloride (염화칼슘이 함유된 제설제로 인한 콘크리트 바닥판 단부의 염해에 관한 사례 연구)

  • Chung, Jee-Seung;Kim, Bo-Heon;Kim, Il-Sun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.87-93
    • /
    • 2014
  • In this study, the reinforced concrete rahmen bridge damaged by the chloride attack was investigated. According to the investigation, the degraded concretes on cantilever kerb and end part were intensively observed. Thus, the chloride content test and half-cell method were performed to evaluate the degraded parts. As a result, the contents of chloride on degraded parts were C and D grade. On the other hand, the half-cell potential values of rebar in degraded concrete were measured with the minor corrosion. This rebar corrosion is expected to progressing. Chloride content D grade is due to expansion pressure by corrosion of rebar and freeze-thaw by permeate water, could see progresses rapidly degradation. In order to prevent chloride attack to concrete deck caused by deicing salts, corresponding to the chloride critical concentration must maintain grade b or at least grade c. Chloride condition evaluation standard apply to evaluation of marine structure chloride attack with chloride attack by deicing salts.

Evaluation of Hydrogen Sulfide Corrosion Inhibitors for Wet Gas Pipeline Steel

  • Huy, Vu Dinh;Thoa, Nguyen Thi Phuong;Phong, Tran Quoc;Hoang, Nguyen Thai
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.95-99
    • /
    • 2005
  • Wheel test and potentiodynamic polarization methods were used to evaluate the relative effectiveness of some hydrogen sulfide corrosion inhibitors for the wet gas pipeline API 5L grade X 65 steel. Five commercially corrosion inhibitors have been studied in the deoxygenated produced water solutions containing 10 ppm and 100 ppm of hydrogen sulfide. Based on the experiment results the steel corrosion inhibition mechanism in discussed and two most effective corrosion inhibitors are selected.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

Corrosion Behavior of Titanium for Implant in Simulated Body Fluids (인공 체액 조건에서 임플랜트용 티타늄 소재의 부식 특성)

  • 이중배;최기열
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.2
    • /
    • pp.110-118
    • /
    • 2004
  • The corrosion of pure titanium (CP- Ti Grade 2) and titanium alloy (Ti6Al4V ELI) were studied under various conditions of simulated body fluids. The static immersion test and the electrochemical test were performed in accordance with ISO 10271 : 2001. For the electrochemical test, the open circuit potential was monitored as a function of time, and the cyclic polarization curve was recorded. The corrosion resistance was evaluated from the values of corrosion potential, passivation current density, breakdown potential, and the shape of hysteresis etc. The effects of alloy type, surface condition, temperature, oxygen, and constituents in the fluids such as acid, chloride were estimated. Both specimens had extremely low dissolution rate in the static immersion test. They showed strong passivation characteristics in the electrochemical test. They maintained negligible current density throughout the wide anodic potential range. The passive layer was not broken up to 2.0 V (vs. SCE). The hysteresis and the shift of passivation potential toward the anodic direction was observed during the reversed scan. The passivation process appeared to be accelerated by oxygen in air or that dissolved in the fluids. The passivation also proceeded without oxygen by the reaction of constituents in the fluids. Acid or chloride in the fluids, specially later weakened the passive layer, and then induced higher passivation current density and less shift of passivation potential in the reversed scan. CP-Ti Grade 2 was more reactive than Ti6Al4V ELI in the fluids containing acid or chloride, but thicker layer produced on its surface provided higher corrosion resistance.

Evaluation of Grooving Corrosion and Electrochemical Properties of H2S Containing Oil/Gas Transportation Pipes Manufactured by Electric Resistance Welding

  • Rahman, Maksudur;Murugan, Siva Prasad;Ji, Changwook;Cho, Yong Jin;Cheon, Joo-Yong;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • Electrical Resistance Welding (ERW) on a longitudinal seam-welded pipe has been extensively used in oil and gas pipelines. It is well known that the weld zone commonly suffers from grooving corrosion in ERW pipes. In this paper, the grooving corrosion performances of API X65 grade non-sour service (steel-A) and API X70 grade sour gas resistant (steel-B) steel electrical resistance welding pipelines were evaluated. The microstructure of the bondline is composed of coarse polygonal ferrite grains and several elongated pearlites. The elongated pattern is mainly concentrated in the center of the welded area. The grooving corrosion test and electrochemical polarization test were conducted to study the corrosion behavior of the given materials. A V-shaped corrosion groove was found at the center of the fusion zone in both the steel-A and steel-B ERW pipes, as the corrosion rate of the bondlines is higher than that of the base metal. Furthermore, the higher volume fraction of pearlite at the bondline was responsible for the higher corrosion rate at the bondline of both types of steel.