• Title/Summary/Keyword: corrosion-erosion environment

Search Result 58, Processing Time 0.024 seconds

Study on the behavior of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 거동에 관한연구)

  • 이상열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.695-701
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. THe erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated, The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively.

  • PDF

Study on the Corrosion and Cavitation Erosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식과 캐비테이션 침식 방지에 관한 연구)

  • Lim, Uh Joh;Kim, Seong Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.359-365
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of $Cl^-$. Generally, to protect these accidents, mainly applied anti-corrosion paint and epoxy coating. But it was still remained erosion-corrosion damage such as impingement erosion, cavitation erosion, deposit attack. There was needs to develope the new coating materials to protective those corrosion damages. This paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS were investigated electrochemical tests and cavitation erosion test for corrosion behaviour under sea water. The main results obtained are as follows, 1) Surface of epoxy coating appear erosion pin hole but surface of polyester glass flake and vinylester glass flake lining do not appear erosion pin hole after impingement-cavitation erosion test in sea water. 2) Weight loss of polyester glass flake and vinylester glass flake lining do not occur after impingement-cavitation erosion test in sea water. 3) Corrosion current density of polyester glass flake lining less drained than epoxy coating and substrate under corrosion potential.. 4) Corrosion current density of vinylester glass flake lining with three coating less drained than that of polyester glass flake lining with two coating.

  • PDF

Comparing Erosion-Corrosion Behaviors of Carbon Steel and Hadfield Steel According to Pipe Forming (탄소강 및 해드필드강의 파이프 조관에 따른 침식부식 거동에 대한 비교연구)

  • Yun, Duck Bin;Park, Jin Sung;Lee, Sang Cheol;Choi, Jong Gyo;Hwang, Joong Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2022
  • Erosion-corrosion behaviors of Hadfield steel under a neutral aqueous environment with fine SiO2 particles were examined and compared with those of conventional carbon steel. A range of electrochemical experiments (potentiodynamic polarization, linear polarization, and impedance), immersion test, and slurry pot test (i.e., erosion-corrosion test) were performed. Results showed that the Hadfield steel composed of austenitic matrix with (Fe,Mn)-based carbide had lower corrosion potential and higher corrosion current density than carbon steel with a typical ferrite/pearlite structure. In addition, pipe forming increased total corrosion rates (i.e., pure corrosion and erosion-enhanced corrosion rates). Nevertheless, the erosion-corrosion rate of Hadfield steel was much smaller. Morphological observation showed that local damage in the form of a crater by erosion-corrosion was more noticeable in carbon steel. The higher resistance of Hadfield steel to erosion-corrosion was attributed to its lower total erosion rates (i.e., pure erosion and corrosion-enhanced erosion rates) highly depending on surface hardness. This study suggests that Hadfield steel with higher resistances to flowing erosion-corrosion in an aqueous environment can be applied widely to various industrial fields.

Study on the Control of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 억제에 관한 연구)

  • Lim, U.J.;Lee, S.Y.;Yun, B.D.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. The erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated. The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively. The main results obtained are as follows : 1) The weight loss rate of Ni-Cr coating layer by the erosion-corrosion compared with substrate was smaller. With the lapse of time, the weight loss rate of substrate was linearly increased in $25{\Omega}{\cdot}cm$ solution, but that of Ni-Cr coating became stable. 2) The corrosion potential of substrate became less noble than that of Ni-Cr coating layer, and the corrosion current density of Ni-Cr coating became lower than that of substrate. 3) The control efficiency of erosion-corrosion of Ni-Cr coating compared to substrate became more dull than that of corrosion in $25{\Omega}{\cdot}cm$ and $5000{\Omega}{\cdot}cm$ solution.

  • PDF

Influence of Lubricating Oil Emulsified on the Behaviour of Cavitation Erosion - Corrosion at Bearing Metals (베어링 합금재의 캐비테이션 침식-부식거동에 미치는 유화 윤활유의 영향)

  • 임우조;이진열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.42-49
    • /
    • 1993
  • Recently, because the lubricating oil showed a tendency to be emulsified and oxidized by high speed, high output and the extension of maintenance & conservation of marine engine, the cavitation erosion-corrosion at such an environment became a big problem on effective performance of engine. Therefore, there was a need to study the behavior and protection of erosion-corrosion damage, and then applied inhibitor to a protective method of cavitation erosion- corrosion damage. At this time, test environments were marine lubricating oil & various emulsified oil that mixed distilled water and sea water etc., and also used 20KHz, 24.mu.m piezoelectric vibrator as an experimental apparatus of cavitation erosion. With this apparatus, we investigated an influence of the emulsified oil on characteristics of erosion-corrosion and protection for erosion-corrosion by inhibitor at slide bearing metals.

  • PDF

A Study on the Erosion-Corrosion of Sprayed Cu-Ni Alloy Coating in the Marine Environment (해양환경 중에서 Cu-Ni 용사피복재의 침식-부식에 관한 연구)

  • Lee, Sang-Yoel;Lim, Uh-Joh;Yun, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.10 no.1
    • /
    • pp.69-78
    • /
    • 1998
  • Thermal sprayed Cu-Ni alloy coating on the carbon steel was carried out impingement erosion-corrosion test and electrochemical corrosion test in the marine environment. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Cu-Ni coating was investigated, and the corrosion control efficiency of Cu-Ni coating to substrate was estimated quantitatively. Main results obtained are as follows : 1) The weight loss rate of Cu-Ni coating layer by the impingement erosion-corrosion compared with substrate was smaller in high specific resistance solution than in low specific resistance solution. 2) The corrosion potential of Cu-Ni coating layer spray coating in the marine environment became more noble than that of substrate. 3) With the lapse of time, corrosion current density of Cu-Ni coating layer became stable, but that of substrate was increased. 4) As the corrosion control efficiency of Cu-Ni coating layer in the marine environment was over 90%, its anti-corrosion characteristics was excellent.

  • PDF

Effect of Flow Rate on Erosion Corrosion Damage and Damage Mechanism of Al5083-H321 Aluminum Alloy in Seawater Environment (해수 환경에서 Al5083-H321 알루미늄 합금의 침식부식 손상에 미치는 유속의 영향과 손상 메카니즘)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.115-121
    • /
    • 2020
  • In this study, erosion tests and erosion-corrosion tests of Al5083-H321 aluminum alloy were conducted at various flow rates in seawater. The erosion tests were conducted at a flow rate of 0 to 20 m/s, and erosion-corrosion tests were performed by potentiodynamic polarization method at the same flow rate. Characteristic evaluation after the erosion test was conducted by surface analysis. Characteristic evaluation after the erosion-corrosion test was performed by Tafel extrapolation and surface analysis. The results of the surface analysis after the erosion test showed that surface damage tended to increase as the flow rate increased. In particular, intermetallic particles were separated due to the breakdown of the oxide film at 10 m/s or more. In the erosion-corrosion test, the corrosion current density increased as the flow rate increased. Additionally, the surface analysis showed that surface damage occurred in a vortex shape and the width of the surface damage tended to increase as the flow rate increased. Moreover, damage at 0 m/s, proceeded in a depth direction due to the growth of pitting corrosion, and the damaged area tended to increase due to acceleration of the intermetallic particle loss by the fluid impact.

Erosion Corrosion Characteristics of Al5052-O and Al6061-T6 Aluminum Alloys with Flow Rate of Seawater (해수 유속 변화에 따른 Al5052-O와 Al6061-T6 알루미늄 합금의 침식부식 특성)

  • Kim, Young-Bok;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.292-299
    • /
    • 2019
  • The hull material of a high-speed ship may cause erosion damage from fluid impact. When physical erosion and electrochemical corrosion combine, erosion corrosion damage occurs. The aluminum ship is vulnerable to erosion corrosion because it can be operated at high speed. Thus, in this study, Al5052-O and Al6061-T6 aluminum alloys for the marine environment were selected as experimental materials. The erosion corrosion resistance of Al5052-O and Al6061-T6 aluminum alloys in seawater was investigated by an erosion test and potentiodynamic polarization test at the various flow rate (0 m/s, 5 m/s, 10 m/s, 15 m/s, 20 m/s). Erosion corrosion characteristics were evaluated by surface analysis, 3D analysis, SEM analysis, and the Tafel extrapolation method. The results of surface damage analysis after the erosion test showed that Al6061-T6 presented better erosion resistance than Al5052-O. The results of the potentiodynamic polarization test at the various flow rate, corrosion current density by Tafel extrapolation presented lower values of Al6061-T6 than Al5052-O. Al5052-O showed more surface damage than Al6061-T6 at all flow rates. Consequently, Al6061-T6 presented better erosion corrosion resistance than Al5052-O. The results of this study are valuable data for selecting hull material for an aluminum alloy vessel.

Development and demonstration of an erosion-corrosion damage simulation apparatus (배관 침부식 손상 연속모사 장비 개발 및 실증)

  • Nam, Won Chang;Ryu, Kyung Ha;Kim, Jae Hyoung
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • Pipe wall thinning caused by erosion and corrosion can adversely affect the operation of aged nuclear power plants. Some injured workers owing to pipe rupture has been reported and power reduction caused by unexpected pipe damage has been occurred consistently. Therefore, it is important to develop erosion-corrosion damage prediction model and investigate its mechanisms. Especially, liquid droplet impingement erosion(LDIE) is regarded as the main issue of pipe wall thinning management. To investigate LDIE mechanism with corrosion environment, we developed erosion-corrosion damage simulation apparatus and its capability has been verified through the preliminary damage experiment of 6061-Al alloy. The apparatus design has been based on ASTM standard test method, G73-10, that use high-speed rotator and enable to simulate water hammering and droplet impingement. The preliminary test results showed mass loss of 3.2% in conditions of peripheral speed of 110m/s, droplet size of 1mm-diameter, and accumulated time of 3 hours. In this study, the apparatus design revealed feasibility of LDIE damage simulation and provided possibility of accelerated erosion-corrosion damage test by controlling water chemistry.

A Study on the Corrosion Control of Glass Flake Lining for Mild Steel in Marine Environment (해양환경 중에서 Glass Flake 라이닝 강재의 부식방지에 관한 연구)

  • Lim, Uh-Joh;Kim, Seong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.2
    • /
    • pp.164-175
    • /
    • 2000
  • Port facilities and marine structures used in marine environment were encountered to corrosion damages because of the influence of Cl-. Generally, to protect these accidents, anti-corrosion paint and epoxy coating have been used. But they were still remained erosion-corrosion damage like impingement erosion, cavitation erosion and deposit attack. It is necessary to develope the new composite lining material in order to protective those corrosion damages. In this paper, polyester glass flake, vinylester glass flake lining and epoxy coating for SS400 were investigated by the electrochemical polarization test and the impingement-cavitation erosion test for corrosion behaviour under the sea water. The main results obtained are as follows ; 1) Epoxy coating appear potentiodynamic polarization behaviour, but polyester glass flake and vinylester glass flake lining do not appear potentiodynamic polarization behaviour. 2) Open circuit potential of polyester glass flake lining is more noble than that of epoxy coating and corrosion current density of polyester glass flake lining is less drained than that of epoxy coating in sea water. 3) Open circuit potential of vinylester glass flake lining is more noble than that of polyester glass flake lining and corrosion current density of vinylester glass flake lining is less drained than that of polyester glass flake lining in the sea water.

  • PDF