• Title/Summary/Keyword: corrosion test

Search Result 2,025, Processing Time 0.027 seconds

Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석)

  • Ha, Taehun;Cho, Junhyun;Park, Jaeman;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF

The Effect of Compressive Residual Stress of Spring Steel for Vehicle on Corrosion (차량용 스프링강재의 압축잔류응력이 부식에 미치는 영향)

  • Park Keyungdong;An Jaepil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.159-165
    • /
    • 2005
  • Shot peening can be defined as the process of work hardening of the surface of components by means of propelled stream of spherical shot. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in $3.5\%\;NaCl$. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened spring steels on the environment corrosion are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal.

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

An Evaluation of Corrosion Protective Systems for Reinforcing Steel in Concrete (콘크리트 구조물의 철근 방식성능 실험평가)

  • Hur, Jun;Hong, Gi-Suop;Oh, Sung-Mo;Jang, Ji-Won;Choi, Eung-Kyu;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.275-280
    • /
    • 1997
  • An experimental study to evaluate corrosion protection systems was undertaken with 47 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring marcrocell corrosion currents, which are generally accepted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl an exposed to a 10 percent of NaCl show high values of corrosion currents. For the specimens with water repellent membrane currents kept relatively low numerical values, while test specimens with surface corrosion inhibitor hyprotective systems show high values of corrosion currents. No clear indication of the corrosion inhibitor protective systems might be due to the extremely high chloride exposure of the specimens, which has brought the accelerated corrosion. It would be expected that evaluation of the corrosion protective systems need long-term measurement with specimen exposed les chloride but simulating the real condition.

  • PDF

Atmospheric Corrosion Behavior of Carbon Steel by the Outdoor Exposure Test for 10 Years in Korea

  • Yoo, Y.R.;Choi, S.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.184-199
    • /
    • 2022
  • Steel was exposed in an atmospheric environment, and atmospheric environmental factors that include chloride, humidity, SO2, NO2 etc. induced the corrosion of steel. Corrosivity categories classified by SO2 and chloride deposition rate were low, but those classified by TOW were high in the Korean Peninsula, and on these environmental categories, the corrosivity of atmospheres classified by corrosion rate in carbon steel was low medium, C2-C3, and medium, C3 for zinc, copper, and aluminum. This work performed the outdoor exposure test for 10 years at 14 areas in Korea and calculated the atmospheric corrosion rate of carbon steel. The atmospheric corrosion behavior of carbon steel is discussed based on the various corrosion factors. When the corrosion product forms on carbon steel by atmospheric corrosion, cracks may also be formed, and through these cracks, the environmental factors can penetrate into the interior of the product, detach some of the corrosion products and finally corrode locally. Thus, the maximum corrosion rate was about 7.3 times greater than the average corrosion rate. The color difference and glossiness of carbon steel by the 10 year-outdoor exposure tests are discussed based on the corrosion rate and the environmental factors.

A Study on the Corrosion Susceptibility and Corrosion Fatigue Characteristics on the Material of Turbine Blade (Turbine Blade재료의 부식민감성과 부식피로특성에 관한 연구)

  • Jo, Seon-Yeong;Kim, Cheol-Han;Ryu, Seung-U;Kim, Hyo-Jin;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.603-612
    • /
    • 2000
  • Corrosion characteristics on the 12Cr alloy steel of turbine blade was electro-chemically investigated in 3.5wt% NaCI and 12.7wt% Na2S04 solution, respectively. Electro-chemical polarization test, Huey test and Oxalic acid etching test were previously conducted to estimate corrosion susceptibility of the material. And, using the horizontal corrosion fatigue tester, corrosion fatigue characteristics of 12Cr alloy steel in distilled water, 3.5wt% NaCI solution, and 12.7wt%(1M) Na2S04 solution were also fracture-mechanically estimated and compared their results. Parameter considered was room temperature, 60'C and 90'C. Corrosion fatigue crack length was measured by DC potential difference method.Obtained results are as follows,1) 12Cr alloy steel showed high corrosion rate in 3.5wt% NaCI solution and Na2S04 solution at high tempratue.2) Intergranular corrosion sensitivity of 12 Cr alloy was smaller than austenitic stainless steel.3) Corrosion fatigue crack growth rate in 3.5wt% NaCI and 12.7wt%(IM) Na2S04 solution is entirely higher than in the distilled water, and also increased with the temperature increase.

Comparing Erosion-Corrosion Behaviors of Carbon Steel and Hadfield Steel According to Pipe Forming (탄소강 및 해드필드강의 파이프 조관에 따른 침식부식 거동에 대한 비교연구)

  • Yun, Duck Bin;Park, Jin Sung;Lee, Sang Cheol;Choi, Jong Gyo;Hwang, Joong Ki;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2022
  • Erosion-corrosion behaviors of Hadfield steel under a neutral aqueous environment with fine SiO2 particles were examined and compared with those of conventional carbon steel. A range of electrochemical experiments (potentiodynamic polarization, linear polarization, and impedance), immersion test, and slurry pot test (i.e., erosion-corrosion test) were performed. Results showed that the Hadfield steel composed of austenitic matrix with (Fe,Mn)-based carbide had lower corrosion potential and higher corrosion current density than carbon steel with a typical ferrite/pearlite structure. In addition, pipe forming increased total corrosion rates (i.e., pure corrosion and erosion-enhanced corrosion rates). Nevertheless, the erosion-corrosion rate of Hadfield steel was much smaller. Morphological observation showed that local damage in the form of a crater by erosion-corrosion was more noticeable in carbon steel. The higher resistance of Hadfield steel to erosion-corrosion was attributed to its lower total erosion rates (i.e., pure erosion and corrosion-enhanced erosion rates) highly depending on surface hardness. This study suggests that Hadfield steel with higher resistances to flowing erosion-corrosion in an aqueous environment can be applied widely to various industrial fields.

Effect of Corrosion Characteristics in Relation to Loaded Stress in the Welded Zone of A5083-H116 Aluminum Alloy (A5083-H116 알루미늄 합금재 용접부의 부하응력에 따른 부식특성의 영향)

  • Jo, S.K.;Kong, Y.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-51
    • /
    • 2004
  • Effect of corrosion characteristics in relation to loaded stress in the welded zone of A5083-H116 aluminum alloy, in the seawater was studied. The corrosion experiment was performed for 120 hours on the specimens in the natural seawater tank with four steps of the loaded stress. The corrosion crack, corrosion rate, electrode potential, current, and corrosion pattern, etc. were examined for the specimens with the elapse of the immersion time. The main result derived from this study is the crack growth length is increased with the increasing loaded stress. The electrode potential and the corrosion current are decreased rapidly in the early stage of the corrosion, and then decreased gradually and stabilized eventually with the elapse of the immersion time. The test condition of the longer crack growth tends to show the higher corrosion rate. Corrosion pattern of the welded zone indicates that the depth and width of the pitting become increasing with the increasing loaded stress.

  • PDF

Corrosion Behaviro of Ceramics under Corrosive Environments -Corrosion Behavior of Reaction Bonded Silicon Carbides- (부식성 분위기하에서 세라믹스 내식특성 -반응소결 탄화규소의 내식특성-)

  • 한인섭;홍기석;양준환;정헌생
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.161-168
    • /
    • 1990
  • To evaluate the corrosion behavior of reaction bonded silicon carbides, corrosion test was studied for various corrosive environments. Corrosion test for reaction bonded silicon carbides was conducted at 900$^{\circ}C$ under four different gas atmospehres ; air, So2-air, Cl2-O2-Ar, Cl2-N2 and investigated these samples using weight loss, bending strength, XRD, optical micrographs and EDS respectively.

  • PDF