• Title/Summary/Keyword: corrosion rates

Search Result 272, Processing Time 0.024 seconds

Analsis of Preponderant Wear of Earth Brush for an Electrical Multiple Units(EMUs) (전동차용 접지브러쉬 편중마모에 대한 해석)

  • Park, Byung-Sup;Ku, Jung-Su;Kim, Gil-Dong
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.356-361
    • /
    • 2005
  • Earth brush for electrical multiple units(EMUs) is a device through which the current of the EMU load's consumed power fed from the DC 1,500V overhead line (or from the AC 25.000V catenary) flows via axle to the rail(ground) and which prevents the electric corrosion of the axle bearings by preventing the current flow to the axle bearings caused by electric potential from the magnetic field when the bearings rotate together with the earthing function when a thunderbolt falls or a surge comes. The earth brush wear rates among cars, however, shows quite differences when the earth brushes after being separated from the holders are measured with vernier callipers every 6 months of maintenance period. Main causes of the earth brush wear are divided as mechanical, electric arc and electrical one, and the factors can be running speed, current, harmonics, connection state. spring tension, earth brush material, lubricant and so on. but only the earth brushes of the motor(M1) car show the highest wear rate and moreover maintenance difficulty occurs because of the wear rate differences among e earth brushes in one holder. The reason for these preponderant wear comes from the design concept of making preponderant current flow to some particular earth brushes and moreover the heat generated by the harmonics when the inverter starts to operate accelerate the wear. By defining these causes through experiments. I hope that the found results would be helpful for the future EMU design, safety, economy and maintenance.

  • PDF

Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor

  • Min, Ki-Deuk;Hong, Seokmin;Kim, Dae-Whan;Lee, Bong-Sang;Kim, Seon-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.752-759
    • /
    • 2017
  • The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Study of High Speed Steel AISI M4 Powder Deposition using Direct Energy Deposition Process (DED 기술을 이용한 고속도 공구강 M4 분말 적층에 관한 연구)

  • Lee, E.M.;Shin, G.W.;Lee, K.Y.;Yoon, H.S.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • Direct energy deposition (DED) is an additive manufacturing technique that involves the melting of metal powder with a high-powered laser beam and is used to build a variety of components. In recent year, it can be widely used in order to produce hard, wear resistant and/or corrosion resistant surface layers of metallic mechanical parts, such as dies and molds. For the purpose of the hardfacing to achieve high wear resistance and hardness, application of high speed steel (HSS) can be expected to improve the tool life. During the DED process using the high-carbon steel, however, defects (delamination or cracking) can be induced by rapid solidification of the molten powder. Thus, substrate preheating is generally adopted to reduce the deposition defect. While the substrate preheating ensures defect-free deposition, it is important to select the optimal preheating temperature since it also affects the microstructure evolution and mechanical properties. In this study, AISI M4 powder was deposited on the AISI 1045 substrate preheated at different temperatures (room temperature to $500^{\circ}C$). In addition, the micro-hardness distribution, cooling rates, and microstructures of the deposited layers were investigated in order to observe the influence of the substrate preheating on the mechanical and metallurgical properties.

Fatigue Crack Propagation Characteristics of Duplex-Stainless Steel Weldment (III) (2상계 스테인리스강 용접부의 피로크랙전파 특성 (III))

  • 이택순;권종완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.901-910
    • /
    • 1989
  • Corrosion fatigue crack propagation behavior of duplex stainless steel weldments in substitute ocean water was investigated to evalulate effects of micro-structural change and residual stresses. Fatigue crack propagation rate was found influenced markedly .alpha./.gamma. phase ratio but little by residual stresses. Fatigue crack propagation rate is higher in the corrosive environment than in room atmosphere. The crack propagation rate estimated by the measurement of striation spacing was higher than that, obtained by crack length measurement in low .DELTK.K region. At hight .DELTK.K region, however, both crack propagation rates were found to be identical.

Development of a Metal Cladding with Protective SiC Composites and the Characteristics on High temperature Oxidation (SiC 복합체 보호막 금속 피복관의 개발 및 고온산화 특성 분석)

  • Noh, Seonho;Lee, Dong-hee;Park, Kwangheon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.218-226
    • /
    • 2015
  • The goal of this study is to investigate a metal cladding that contains SiC composites as a protective layer and analysis the characteristics of the specimens on high temperature oxidation To make SiC composites, the current process needs a high temperature (about $1100^{\circ}C$) for the infiltration of fixing materials such as SiC. To improve this situation, we need a low temperature process. In this study, we developed a low temperature process for making SiC composites on the metal layer, and we have made two kinds: cladding with protective SiC composites made by polycarbosilane(PCS), and a PCS filling method using supercritical carbon dioxide. A corrosion test at $1200^{\circ}C$ in a mixed steam and Ar atmosphere was performed on these specimens. The result show that the cladding with protective SiC composites have excellent oxidation suprression rates. This study can be said to have developed new metal cladding with enhanced durability by using SiC composite as protective films of metal cladding instead of simple coating film.

Effects of phosphating bath compositions on the formation and structure of zinc phosphate conversion coatings on magnesium alloy AZ31

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.322-323
    • /
    • 2012
  • This study discussed the formation of phosphate conversion coatings on AZ31 Mg alloy (AZ31) from the zinc phosphating bath with various concentrations of sodium fluoride (NaF). The effects of NaF on the formation, structure, composition and electrochemical behavior of the phosphate coatings were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD) weight balances, open circuit potential (OCP) transients, potentiodynamic polarization curves and immersion test. The coatings were composed of two layers: an outer $Zn_2(PO_4)_3.4H_2O$ (hopeite) crystal layer and an inner amorphous of $MgZn_2(PO_4)_2$. NaF concentration is emphasized to be highly effective in the formation of the hopeite crystal and etching and coating rates. Potentiodynamic polarization and immersion test showed that the coatings formed in the zinc phosphating bath with addition of NaF have much higher corrosion resistance than bare AZ31.

  • PDF

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

Degradation of Aqueous Monoethanolamine Absorbent (모노에탄올아민 흡수제의 열화특성 분석)

  • Cho, Youngmin;Nam, Sung-Chan;Yoon, Yeo-Il;Moon, Sungjun;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.195-199
    • /
    • 2010
  • The reversible chemical absorption using MEA (monoethanolamine), one of alkanolamine, is generally used as a conventionally method for $CO_{2}$ capture. Even MEA absorbent has excellent reactivity with $CO_{2}$, it has been known to have the decrease of absorption capacity caused by $CO_{2}$, $O_{2}$ or other acid gases in flue gas, corrosion and thermal degradation. In this study, MEA solutions degraded in the steam reforming process of refinery used and the absorption performance were compared for the used of conventional MEA solution. In case of 30 wt% MEA and mixture of 20 wt% thermal degraded absorbent (DP) and 10 wt% PZ, the absorption capacities were $0.5365mol-CO_{2}$/mol-absorbent and $0.5939mol-CO_{2}$/mol-absorbent respectively. PZ added thermally degraded absorbent showed the enhanced absorption capacity. On the contrary, the absorption rates were $1.1610kg_{f}/cm^2{\cdot}min$ for 30 wt% MEA, $0.5310kg_{f}/cm^2{\cdot}min$ for mixture of 20 wt% thermal degraded absorbent (DP) and 10 wt% PZ and $0.3525kg_{f}/cm^2{\cdot}min$ for 30 wt% thermally degraded absorbent only. The absorption rates of PZ added thermally degraded absorbent was higher than that of thermally degraded absorbent only. Therefore, it can be confirmed that thermally degraded absorbent can be reused as an absorbent for $CO_{2}$ by the addition of suitable additives.

Effect of operating temperature using Ni-Al-$ZrH_2$ anode in molten carbonate fuel cell (Ni-Al-$ZrH_2$ 연료극을 사용한 용융탄산염 연료전지의 온도의 영향)

  • Seo, Dongho;Jang, Seongcheol;Yoon, Sungpil;Nam, Suk Woo;Oh, In-Hwan;Lim, Tae-Hoon;Hong, Seong-Ahn;Han, Jonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.134-134
    • /
    • 2010
  • Fuel cell is a device that directly converts chemical energy in the form of a fuel into electrical energy by way of an electrochemical reaction. In the anode for a high temperature fuel cell, nickel or nickel alloy has been used in consideration of the cost, oxidation catalystic ability of hydrogen which is used as fuel, electron conductivity, and high temperature stability in reducing atmosphere. Most MCFC stacks currently operate at an average temperature of $650^{\circ}C$. There is some gains with decreased temperature in MCFC to diminish the electrolyte loss from evaporation and the material corrosion, which could improve the MCFC life. However, operating temperature has a strong related on a number of electrode reaction rates and ohmic losses. Baker et al. reported the effect of temperature (575 to $650^{\circ}C$). The rates of cell voltage loss were 1.4mV/$^{\circ}C$ for a reduction in temperature from 650 to $600^{\circ}C$, and 2.16mV/$^{\circ}C$ for a decrease from 600 to $575^{\circ}C$. The two major contributors responsible for the change in cell voltage with reducing operation temperature are the ohmic polarization and electrode polarization. It appears that in the temperature range of 550 to $650^{\circ}C$, about 1/3 of the total change in cell voltage with decreasing temperature is due to an increase in ohmic polarization, and the electrode polarization at the anode and cathode. In addition, the oxidation reaction of hydrogen on an ordinary nickel alloy anode in MCFC is generally considered to take place in the three phase zone, but anyway the area contributing to this reaction is limited. Therefore, in order to maintain a high performance of the fuel cell, it is necessary to keep this reaction responsible area as wide as possible, that is, it is needed to keep the porosity and specific surface area of the anode at a high level. In this study effective anodes are prepared for low temperature MCFC capable of enhancing the cell performance by using zirconium hydride at least in part of anode material.

  • PDF