• 제목/요약/키워드: corrosion protection performance

검색결과 93건 처리시간 0.022초

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • 제21권2호
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구 (A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel)

  • 노명현
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

Investigation of Design Methodology for Impressed Current Cathodic Protection Optimum System

  • Yao, Ping;Wu, Jianhua
    • Corrosion Science and Technology
    • /
    • 제7권4호
    • /
    • pp.197-200
    • /
    • 2008
  • In this paper, physical scale modeling was employed to identify the configurations of ICCP system and the electric field signatures. Computational boundary element modeling technique has been used to simulate the performance of the CP system and to predict the associated electric fields signatures. The optimization methods combined with the computer models and physical scale modeling will be presented here, which enable the optimum system design to be achieved both in terms of the location and current output of the anode but also in the location of reference electrodes for impressed current cathodic protection(ICCP) systems. The combined methodology was utilized to determine optimal placement of ICCP components (anodes and reference electrodes) and to evaluate performance of ICCP system for the 2%, 10% and 14% wetted hull coatings loss. The objective is to design the system to minimise the electric field while at the same time provide adequate protection for the ship. The results show that experimental scale modeling and computational modeling techniques can be used in concert to design an optimum ICCP system and to provide information for quickly analysis of the system and its surrounding environment.

이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘 (Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism)

  • 이경희;배일용;김기준;문경만;이명훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF

Corrosion Protection Performance of Polyester-Melamine Coating with Natural Wood Fiber Using EIS Analysis

  • Shin, PyongHwa;Jo, DuHwan;Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.69-77
    • /
    • 2016
  • In the present study, polyester-melamine coating systems with natural wood fiber (NWF) were prepared and the effects of NWF on the corrosion protectiveness of the polyester-melamine coating were examined using EIS analysis. From the results, higher average surface roughness was observed with increase of NWF content. Water diffusivity and water uptake into the polyester-melamine coatings with NWF were much higher than that into the pure polyester-melamine coating. The decrease in the impedance modulus |Z| was associated with the localized corrosion on carbon steel, confirming that corrosion protection of the polyester-melamine coatings with NWF well agrees with its water transport behavior.

Analysis of PVDF Coating Properties with Addition of Hydrophobically Modified Fumed Silica

  • Lee, Nam Kyu;Kim, Young Hoon;Im, Tae Gyu;Lee, Dong Uk;Shon, MinYoung;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.232-242
    • /
    • 2019
  • In this study, hydrophobically modified fumed silica was added to the PVDF coating to improve corrosion protection performance. Two types of silane modifiers, trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ), were used for hydrophobic modification of the fumed silica. The composition of modified fumed silica was analyzed by Fourier transform infrared, X-ray photoelectron spectroscopy, and elemental analysis. The dispersion of modified fumed silica in the PVDF coating was observed by the transmission electron microscopy, and the hydrophobicity of PVDF coating was analyzed by the water contact angle. Surface properties were examined by the field emission scanning electron microscopy and scanning probe microscopy. Potentiodynamic polarization was conducted to confirm corrosion protection performance of PVDF coating in terms of hydrophobically-modified fumed silica contents. As a result, the average surface roughness and the water contact angle of the PVDF coating increased with modifier contents. The results of the potentiodynamic polarization test showed an increase of the Ecorr values with increase of the hydrophobicity of PVDF coating. Thus, it clearly indicates that the corrosion protection performance of PVDF coating improved with the addition of the hydrophobic-modified fumed silica that prevents the penetration of moisture into the PVDF coating.

Atmospheric Corrosion of Hot Dip Zinc Coated Steel in Coastal and Rural Areas of Vietnam

  • Tru, Nguyen Nhi;Duyen, Le Khac;Han, Tran Mai
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.241-246
    • /
    • 2017
  • The comparative results of corrosion testing in humid tropical atmosphere in rural and coastal areas for hot dipped zinc coatings are presented below. The test was conducted in outdoor conditions over a period of five years. The mass loss and other performance characteristics of two types of zinc coatings were evaluated, analysed and discussed in relation to the climatic and environmental parameters. The corrosion rates of the coatings exposed to coastal conditions were about three times higher than the corrosion rates appreciated in rural conditions. The data demonstrates that the corrosion process obeys an equation of the form $M=At^n$, where M is the loss of metal and t is the time of exposure. A and n are constants which values depend on the environmental characteristics and the physicochemical behavior of the corrosion products respectively. Corrosion is strongly influenced by atmospheric time of wetness (TOW) and airborne salinity. The nature and composition of corrosion products are also considered. Simonkolleite, a major crystalline phase, was found in the zinc corrosion products exposed to coastal conditions, while zinc hydroxide and zinc hydrosulfate are easily found in rural settings.

매시브한 해양구조물 적용을 위한 고로슬래그 혼입 콘크리트의 방청성능 평가에 관한 연구 (A Study on the Estimation of Corrosion Protection Performance of Concrete Containing Ground Granulated Blast-Furnace Slag for Massive Coastal Structures)

  • 유재강;김동석;박상준;원철;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.87-91
    • /
    • 2002
  • This paper investigates the corrosion inhibition and the reduction of hydration heat properties of Ground Granulated Blast-Furnace Slag (GGBFS) added concrete. Since the massive civil structure is vulnerable to the thermal crack by hydration. adiabatic temperature rising tests were performed for water-binder ratios from 43.2% to 47.3%, while replacing 15% to 50% of cement with GGBFS of equal weight. Then, the corrosion protection performance was evaluated using cylindrical specimens embedded with steel reinforcement according to the combination of 3 W/B ratios and 2 levels of chloride ion quantity. The corrosion area of the embedded steel ban was determined using the high pressure steam curing method specified in KS F 2561. The test results showed that the replacement of GGBFS was effective in reducing the hydration heat. The corrosion area of the embedded steel ban decreased as the replacement of GGBFS increased. However, the corrosion area of the steel bar was proportional to the autoclave cycle and the chloride ion quantity. Among the tested specimens, compressive strength, reduction of hydration heat, and corrosion inhibition performance were excellent when 50% of cement was replaced with GGBFS of equal weight.

  • PDF

염해환경하 철근콘크리트의 철근 부식 및 방식기법 연구 (Research of Steel Corrosion and Corrosion Protection System for Reinforcing Steels in Concrete Exposed to Chloride Environments.)

  • 문홍식;이상국;송호진;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.653-658
    • /
    • 2001
  • Recent long-span bridges, such as Kwang-Ahn Grand bridge, Seo-Hae Grand Bridge, Young-Jong Grand Bridge, etc, have been designed and constructed near the shore. Thus, it needs to analyze the durability of marine concrete structures which are exposed to severe chloride environments. It is well known that corrosion of reinforcement steel in concrete is one of the major factors for the durability of concrete structures. The objective of this experimental study is to investigate the performance of impressed current system and corrosion inhibitors for the corrosion protection of reinforced concrete structures. Concrete test specimens were made with various test parameters, such as cover depth, steel diameter, compressive strength, direction and frequency of notch. For the efficient evaluation of these corrosion protection systems, these tests have been carried out in the shore.

  • PDF

갈바륨 강판의 특성에 관한 연구 (A Study on the Characteristics of the Galvalume Steel Sheet)

  • 김순경;김민주;전언찬
    • 한국정밀공학회지
    • /
    • 제15권7호
    • /
    • pp.78-84
    • /
    • 1998
  • The problem of autobody corrosion has been addressed over the past decade by the increasing use of zinc and zinc alloy coated steels in automotive application. This paper describes the evaluation of formability, weldability and painted corrosion performance of galvalume steel sheet. This paper presents an overview of the program and some initial test results on the weldability, lifetime of the electrode tip shape of the spot welding and corrosion protection. Galvalume steel sheet improved corrosion performance and spot weldability of galvalume steel sheet was not changed under the influence of the variation of welding current. And tip shape has influenced on the lifetime of tip for galvalume steel sheet.

  • PDF