• Title/Summary/Keyword: corrosion fatigue fracture

Search Result 90, Processing Time 0.027 seconds

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

Time-Frequency Analysis of AE Signals at Fatigue Crack Propagation of Aged Super Duplex Stainless Steels (시효된 수퍼 2상 스테인리스강의 피로균열 진전시 발생하는 음향방출신호의 시간-주파수 분석)

  • 남기우;이상기;도재윤;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.20-25
    • /
    • 2000
  • lh deleterious Cr, Mo rich -$\sigma$phase is a hard embrittling precipitate, which forms between MU)-900 $^{\circ}C$, often associated with a reduction in both impact properties and corrosion reshame. On this study, After aging at MU) "C, fatigue crack propagation induced by a phase precipitation was evaluated and time-frequency analysis of acoustic emission was conducted It was possible to find fracture mechanism by a phase precipitation due to time-frequency anulysis of acoustic emission signals.nals.

  • PDF

MECHANICAL PROPERTIES OF QUARTZ FIBER POST (Quartz fiber post의 물리적 특성에 관한 연구)

  • Lee Young-Soo;Kang Ik-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.68-78
    • /
    • 2002
  • The post core system has been used for reconstructon of severely damaged crown by caries or trauma. But problems such as crown exfoliation, post core fracture and root fracture have been reported. Ideal mechanical properies of the post require high fracture strength, high elastic limit and high resistance against fatigue and corrosion Modulus of elasticity of the post should be similar with that of dentine. Low hardness is also required for the convenience of post removal in failure. Furthermore, the post itself must be translucent for the esthetical purpose. Several types of the post have been developed to satisfy the criteria above mentioned. The purpose of this study was to find out the mechanical properties of quartz fiber post by comparing with those of gold post and zirconia post. The results of this study were as follows : 1. Maximal fracture strength and stiffness of quartz fiber post were similar with those of gold post and zirconia post. 2. Young's modulus and hardness of quartz fiber post were lower than those of gold post and zirconia post. Mechanical property of quartz fiber post against post fracture was similar with that of gold post and zirconia post. Mechanical property of quartz fiber post against root fracture was higher than that of gold post and zirconia post. Quartz fiber post could be removed easily due to low hardness.

Effects of ta-C Coatings on Surface Characteristics of Dental Ni-Ti Files (치과용 Ni-Ti파일의 표면특성에 미치는 ta-C코팅효과)

  • Sun-Kyun Park;Han-Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.368-376
    • /
    • 2023
  • Dental Ni-Ti files must ensure stability and resistance to fatigue fracture. DLC and ta-C were coated to remove defects on the surface and ensure stability, and the surface characteristics were investigated. When coated with DLC, it was black, and in case of ta-C coating, it was blue-black. Scratches, which are defects caused by mechanical processing, were formed on the surface of the un-coated Ni-Ti file from the end of the file along the direction of processing, with the Pro-file appearing in the vertical direction and the K-file appearing in the file direction. Scratches were reduced on the coated surface, and the surface roughness was greatly reduced after coating compared to before coating. The un-coated Ni-Ti file had the lowest hardness, the DLC-coated file had the highest hardness, and ta-C showed relatively high hardness. The elastic modulus of the DLC coating film was high, and the ta-C elastic modulus was low. The adhesion of the DLC coating film tended to be higher than that of ta-C, and the wear loss amount of DLC coating of taC was lower. The corrosion potential of the ta-C coating increased significantly, and the corrosion current density decreased.

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Finite Element Analysis and Validation for Mode I Interlaminar Fracture behavior of Woven Fabric Composite For a Train Carbody Using CZM(Cohesive Zone Model) (CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Seung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.239-246
    • /
    • 2009
  • The Mode I interlaminar fracture toughness of woven fabric carbon/epoxy and glass/epoxy composites for a train carbody was measured and FEM analysis was conducted. The woven fabric epoxy composite manufactured by hand lay-up, has high stiffness and strength, good resistance for impact, fatigue, corrosion and in-plane failure. The DCB(Double Cantilever Beam) specimen made of woven fabric epoxy composite had the size of 180mm $\times$ 25mm $\times$ 5mm and the insert of 65mm. The Mode I interlaminar toughness of specimen was measured according to ASTM 5528-01. The crack propagation behavior of the DCB specimen was simulated using FEA with cohesive elements that model the adhesive layer between woven fabric plies.

  • PDF

The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material (SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.