• Title/Summary/Keyword: corrosion behaviour

Search Result 143, Processing Time 0.022 seconds

A REVIEW AND INTERPRETATION OF RIA EXPERIMENTS

  • Vitanza, Carlo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.591-602
    • /
    • 2007
  • The results of Reactivity-Initiated Accidents (RIA) experiments have been analysed and the main variables affecting the fuel failure propensity identified. Fuel burn-up aggravates the mechanical loading of the cladding, while corrosion, or better the hydrogen absorbed in the cladding as a consequence of corrosion, may under some conditions make the cladding brittle and more susceptible to failure. Experiments point out that corrosion impairs the fuel resistance for RIA transient occurring at cold conditions, whereas there is no evidence of important embrittlement effects at hot conditions, unless the cladding was degraded by oxide spalling. A fuel failure threshold correlation has been derived and compared with experimental data relevant for BWR and PWR fuel. The correlation can be applied to both cold and hot RIA transients, account taken for the lower ductility at cold conditions and for the different initial enthalpy. It can also be used for non-zero power transients, provided that a term accounting for the start-up power is incorporated. The proposed threshold is easy to use and reproduces the results obtained in the CABRI and NSRR tests in a rather satisfactory manner. The behaviour of advanced PWR alloys and of MOX fuel is discussed in light of the correlation predictions. Finally, a probabilistic approach has been developed in order to account for the small scatter of the failure predictions. This approach completes the RIA failure assessment in that after determining a best estimate failure threshold, a failure probability is inferred based on the spreading of data around the calculated best estimate value.

Square CFST columns under cyclic load and acid rain attack: Experiments

  • Yuan, Fang;Chen, Mengcheng;Huang, Hong
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.171-183
    • /
    • 2019
  • As China's infrastructure continues to grow, concrete filled steel tubular (CFST) structures are attracting increasing interest for use in engineering applications in earthquake prone regions owing to their high section modulus, high strength, and good seismic performance. However, in a corrosive environment, the seismic resistance of the CFST columns may be affected to a certain extent. This study attempts to investigate the mechanical behaviours of square CFST members under both a cyclic load and an acid rain attack. First, the tensile mechanical properties of steel plates with various corrosion rates were tested. Second, a total of 12 columns with different corrosion rates were subjected to a reversed cyclic load and tested. Third, comparisons between the test results and the predicted ultimate strength by using four existing codes were carried out. It was found that the corrosion leads to an evident decrease in yield strength, elastic modulus, and tensile strain capacity of steel plates, and also to a noticeable deterioration in the ultimate strength, ductility, and energy dissipation of the CFST members. A larger axial force ratio leads to a more significant resulting deterioration of the seismic behaviour of the columns. In addition, the losses of both thickness and yield strength of an outer steel tube caused by corrosion should be taken into account when predicting the ultimate strength of corroded CFST columns.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Evaluation of the inhibitive characteristics of 1,4-dihydropyridine derivatives for the corrosion of mild steel in 1M $H_2SO_4$

  • Sounthari, P.;Kiruthika, A.;Sai santhoshi, J.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.65-78
    • /
    • 2013
  • The present investigation deals with the corrosion inhibition of mild steel in 1M $H_2SO_4$ with 1, 4-dihydro pyridine and its derivatives prepared using microwave activation method. The synthesis of inhibitor was confirmed by IR spectra. The effect of 1, 4-dihydropyridine derivatives on the corrosion inhibition of mild steel in 1M $H_2SO_4$ was studied using weight loss and electrochemical polarization techniques. Influence of temperature (303-333K) and synergistic effect of halide ions ($I^-$, $Br^-$ and $Cl^-$) on the inhibition behaviour was also studied. Corrosion products on the metal surface were analyzed by scanning electron microscopy (SEM) and a possible mechanism of inhibition by the compounds is suggested. Thermodynamic parameters were calculated using weight loss data in order to elaborate the mechanism of corrosion inhibition. Polarization measurements revealed that the studied compounds acted as mixed type inhibitor but slightly anodic in nature. Electrochemical impedance measurements revealed that the compounds were adsorbed onto the carbon steel surface and the adsorption obeyed the Langmuir adsorption isotherm. The synergistic effect of halide ions on the IE increases with increase in concentration. The IE obtained from atomic absorption spectrophotometric studies was found to be in good agreement with that obtained from the conventional weight loss method. SEM revealed the information of a smooth, dense protective layer in presence of the inhibitors.

Effects of alkali solutions on corrosion durability of geopolymer concrete

  • Shaikh, Faiz U.A.
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.109-123
    • /
    • 2014
  • This paper presents chloride induced corrosion durability of reinforcing steel in geopolymer concretes containing different contents of sodium silicate ($Na_2SiO_3$) and molarities of NaOH solutions. Seven series of mixes are considered in this study. The first series is ordinary Portland cement (OPC) concrete and is considered as the control mix. The rest six series are geopolymer concretes containing 14 and 16 molar NaOH and $Na_2SiO_3$ to NaOH ratios of 2.5, 3.0 and 3.5. In each series three lollypop specimens of 100 mm in diameter and 200 mm in length, each having one 12 mm diameter steel bar are considered for chloride induced corrosion study. The specimens are subjected to cyclic wetting and drying regime for two months. In wet cycle the specimens are immersed in water containing 3.5% (by wt.) NaCl salt for 4 days, while in dry cycle the specimens are placed in open air for three days. The corrosion activity is monitored by measuring the copper/copper sulphate ($Cu/CuSO_4$) half-cell potential according to ASTM C-876. The chloride penetration depth and sorptivity of all seven concretes are also measured. Results show that the geopolymer concretes exhibited better corrosion resistance than OPC concrete. The higher the amount of $Na_2SiO_3$ and higher the concentration of NaOH solutions the better the corrosion resistance of geopolymer concrete is. Similar behaviour is also observed in sorptivity and chloride penetration depth measurements. Generally, the geopolymer concretes exhibited lower sorptivity and chloride penetration depth than that of OPC concrete. Correlation between the sorptivity and the chloride penetration of geopolymer concretes is established. Correlations are also established between 28 days compressive strength and sorptivity and between 28 days compressive strength and chloride penetration of geopolymer concretes.

Corrosion Fatigue Crack Propagation Behaviour of TMCP Steel Plate at Ballast Tank of Ship Structure under the Condition of Cathodic Overprotection (선체구조 Ballast Tank 고장력 TMCP강판의 과방식중 부식피로균열 전파거동)

  • Kim, Won-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2465-2471
    • /
    • 2012
  • For the steel structures those are used in harsh sea environments, corrosion fatigue is a challenging issue in connection with design life. In this research, in order to investigate the influence of cathodic overprotection on the corrosion fatigue crack propagation behavior, corrosion fatigue crack propagation test under the condition of -950mV vs SCE was conducted by using of high tensile TMCP steel plate and the relationships between da/dN-${\Delta}K$ were obtained. At this test, when ${\Delta}K$ is low, the crack propagation rates were accelerated compared to those of seawater condition, however, when ${\Delta}K$ is high, the crack propagation rates were lower than those of seawater condition. As the cause for the acceleration and deceleration of corrosion fatigue crack propagation rates under the condition of cathodic overprotection, the role of hydrogen and calcareous deposits are discussed.

Rock burst criteria of deep residual coal pillars in an underground coal mine: a case study

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Liu, Xuesheng;Hu, Shanchao;Gu, Qingheng
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.499-511
    • /
    • 2019
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

Corrosion Behaviour of Fe-XAl-0.3Y Alloys at High Temperature Sulfidation Environment(Ps2=10-3Pa) (Fe-XAl-0.3Y 합금의 고온 황화환경(Ps2=10-3Pa)에서의 부식거동)

  • Lee Byung Woo;Park Hwa Soon
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.547-551
    • /
    • 2004
  • The sulfidation behaviour of Fe-XAl-0.3Y(X=5, 10, 14, 25 $wt.\%$) alloys was investigated at 1123 K in $H_2/H_{2}S$ gas atmosphere for $1\sim24$ hrs using SEM/EDX, XRD and EPMA. The weight changes of Fe-XAl-0.3Y alloys followed the parabolic rate law, Sulfidation rates of iron aluminide alloys with high Al content were one-twentieth lower than that of 5Al alloys. This is due to the formation of protective $Al_{2}O_3$ oxides on the surface of 10Al, 14Al and 25Al alloys. By calculating partial pressure of impurity oxygen contained $H_2/H_{2}S$ gas, the $Al_{2}O_3$ oxides formation could be explained using Fe-Al-S-O thermodynamic stability diagram. The sulfidation product scales of the 5Al alloy showed that thick iron sulfide scale(FeS) containing porosities formed during early stages of sulfidation. With continued sulfidation, aluminum sulfide was formed at the alloy/scale interface.

Torsional behaviour of reinforced concrete beams retrofitted with aramid fiber

  • Kandekar, Sachin B.;Talikoti, Rajashekhar S.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Retrofitting is an alteration of existing member or component of the structure. In civil engineering point of view, it is called strengthening of the old structure. Deterioration of structures may be due to aging, corrosion, failure of joints, earthquake forces, increase in service loads, etc. Such structures need urgent repair, retrofitting and strengthening to avoid collapse, cracking and loss in strength or deflection. Advanced techniques are required to be developed for the repair of structural components to replace conventional techniques. This paper focuses exclusively on torsional behaviour of Reinforced Concrete (RC) beams and retrofitted RC beams wrapped with aramid fiber. Beams were retrofitted with aramid fiber by full wrapping and in the form of 150 mm wide strips at a spacing of 100 mm, 150 mm, 200 mm respectively using epoxy resin and hardener. A total 15 numbers of RC beams of 150 mm×300 mm×1300 mm in size were cast, 3 beams are tested as control specimens, and 12 beams are tested for torsion up to the failure and then retrofitted with aramid fiber. Experimental results are validated with the help of data obtained by finite element analysis using ANSYS. The full wrapping configuration of aramid fiber regains 105% strength after retrofitting. With the increase in spacing of fabric material, torsional strength reduces to 82% with about 45% saving in material.

Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars

  • Cardone, D.;Perrone, G.;Sofia, S.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.41-62
    • /
    • 2013
  • A comprehensive experimental program of cyclic tests on 1:3-scale models of bridge piers is going to be carried out at the Laboratory of Structures and Materials of the University of Basilicata. The testing models include eight RC single shaft piers with hollow circular cross section. Four piers have been realised using corroded steel rebars. In this paper, the results of preliminary numerical simulation analyses of the cyclic behaviour of the piers, carried out with Opensees using fiber-based models, are presented. Pull-out and lap-splice effects of steel rebars have been taken into account in the numerical analyses. First, the experimental specimens and the test set up are presented. Next, the results of the numerical analyses are discussed. In the numerical analyses, different configurations and levels of corrosion have been considered. The effective stiffness and equivalent damping of the piers is reported as a function of pier ductility and pier drift.