• Title/Summary/Keyword: correlation model of the network flow

Search Result 33, Processing Time 0.02 seconds

A Traffic-Classification Method Using the Correlation of the Network Flow (네트워크 플로우의 연관성 모델을 이용한 트래픽 분류 방법)

  • Goo, YoungHoon;Lee, Sungho;Shim, Kyuseok;Sija, Baraka D.;Kim, MyungSup
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.433-438
    • /
    • 2017
  • Presently, the ubiquitous emergence of high-speed-network environments has led to a rapid increase of various applications, leading to constantly complicated network traffic. To manage networks efficiently, the traffic classification of specific units is essential. While various traffic-classification methods have been studied, a methods for the complete classification of network traffic has not yet been developed. In this paper, a correlation model of the network flow is defined, and a traffic-classification method for which this model is used is proposed. The proposed network-correlation model for traffic classification consists of a similarity model and a connectivity model. Suggestion for the effectiveness of the proposed method is demonstrated in terms of accuracy and completeness through experiments.

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

Modeling properties of self-compacting concrete: support vector machines approach

  • Siddique, Rafat;Aggarwal, Paratibha;Aggarwal, Yogesh;Gupta, S.M.
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.461-473
    • /
    • 2008
  • The paper explores the potential of Support Vector Machines (SVM) approach in predicting 28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from the exiting literature were used in present work. To compare the performance of the technique, prediction was also done using a back propagation neural network model. For this data-set, RBF kernel worked well in comparison to polynomial kernel based support vector machines and provide a root mean square error of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural network approach for both 28-day compressive strength and slump flow prediction.

Selection and Noise Evaluation Methods of the System Electronic Cooling Fan (시스템 전자 냉각 팬의 선정 및 소음 평가 기법)

  • Lee, Chan;Yun, Jae-Ho;Gwon, Oh-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.33-38
    • /
    • 2007
  • Fan selection procedure and fan noise evaluation method are presented for the system electronic cooling by combining FNM(Flow Network Model) and fan noise correlation model. Internal flow paths and distribution in electronic system we analyzed by using the FNM with the flow resistances for flow elements of the system. Based on the fan operation point predicted from the FNM analysis results, the present fan noise model predicts overall sound power, pressure levels and spectrum. The predictions of the flow distribution, the fan operation and the noise level in electronic system by the present method are well agreed with 3-D CFD and actual test results.

NUMERICAL STUDY FOR THE FULL-SCALE ANALYSIS OF PLATE-TYPE HEAT EXCHANGER USING ONE-DIMENSIONAL FLOW NETWORK MODEL and ε-NTU METHOD (판형 열교환기 Full-scale 해석을 위한 1차원 유동 네트워크 모델 및 ε-NTU 모델의 수치적 연구)

  • Kim, Minsung;Min, June Kee;Ha, Man Yeong
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2014
  • Since a typical plate heat exchanger is made up of a huge number of unitary cells, it may be impossible to predict the aero-thermal performance of the full scale heat exchanger through three-dimensional numerical simulation due to the enormous amount of computing resources and time required. In the present study, a simple flow-network model using the friction factor correlation and a thermal-network model based on the effectiveness-number of transfer units (${\varepsilon}$-NTU) method has been developed. The complicated flow pattern inside the cross-corrugated heat exchanger has been modeled into flow and thermal networks. Using this model, the heat transfer between neighboring streams can be considered, and the pressure drop and the heat transfer rate of full-scale heat exchanger matrix are calculated. In the calculation, the aero-thermal performance of each unitary cell of the heat exchanger matrix was evaluated using correlations of the Fanning friction factor f and the Nusselt number Nu, which were calculated by unitary-cell CFD model.

Probabilistic Power Flow Studies Incorporating Correlations of PV Generation for Distribution Networks

  • Ren, Zhouyang;Yan, Wei;Zhao, Xia;Zhao, Xueqian;Yu, Juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.461-470
    • /
    • 2014
  • This paper presents a probabilistic power flow (PPF) analysis method for distribution network incorporating the randomness and correlation of photovoltaic (PV) generation. Based on the multivariate kernel density estimation theory, the probabilistic model of PV generation is proposed without any assumption of theoretical parametric distribution, which can accurately capture not only the randomness but also the correlation of PV resources at adjacent locations. The PPF method is developed by combining the proposed PV model and Monte Carlo technique to evaluate the influence of the randomness and correlation of PV generation on the performance of distribution networks. The historical power output data of three neighboring PV generators in Oregon, USA, and 34-bus/69-bus radial distribution networks are used to demonstrate the correctness, effectiveness, and application of the proposed PV model and PPF method.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

Two-Stage Model for Security Network-Constrained Market Auction in Pool-Based Electricity Market

  • Kim, Mun-Kyeom
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2196-2207
    • /
    • 2017
  • This paper presents a two-stage market auction model in a pool-based electricity market, which explicitly takes into account the system network security. The security network-constrained market auction model considers the use of corrective control to yield economically efficient actions in the post-contingency state, while ensuring a certain security level. Under this framework, the proposed model shows not only for quantifying the correlation between secure system operation and efficient market operation, but also for providing transparent information on the pricing system security for market participants. The two-stage market auction procedure is formulated using Benders decomposition (BD). In the first stage, the market participants bid in the market for maximizing their profit, and the independent system operator (ISO) clears the market based on social welfare maximization. System network constraints incorporating post-contingency control actions are described in the second stage of the market auction procedure. The market solutions, along with the BD, yield nodal spot prices (NSPs) and nodal congestion prices (NCPs) as byproducts of the proposed two-stage market auction model. Two benchmark systems are used to test and demonstrate the effectiveness of the proposed model.

Components Clustering for Modular Product Design Using Network Flow Model (네트워크 흐름 모델을 활용한 모듈러 제품 설계를 위한 컴포넌트 군집화)

  • Son, Jiyang;Yoo, Jaewook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.263-272
    • /
    • 2016
  • Modular product design has contributed to flexible product modification and development, production lead time reduction, and increasing product diversity. Modular product design aims to develop a product architecture that is composed of detachable modules. These modules are constructed by maximizing the similarity of components based on physical and functional interaction analysis among components. Accordingly, a systematic procedure for clustering the components, which is a main activity in modular product design, is proposed in this paper. The first phase in this procedure is to build a component-to-component correlation matrix by analyzing physical and functional interaction relations among the components. In the second phase, network flow modeling is applied to find clusters of components, maximizing their correlations. In the last phase, a network flow model formulated with linear programming is solved to find the clusters and to make them modular. Finally, the proposed procedure in this research and its application are illustrated with an example of modularization for a vacuum cleaner.