• Title/Summary/Keyword: correlated double sampling

Search Result 23, Processing Time 0.025 seconds

A Study on the Design of a Current Type ROIC for Uncooled Bolometer Thermal Image Sensor Using Correlated Double Sampling

  • Kwak, Sang-Hyeon;Lee, Po;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.7-8
    • /
    • 2009
  • In the presence of infrared light, a CMOS Readout IC (ROIC) for a microbolometer typed infrared sensor detects the voltage or current that is caused by the changing in resistance in the bolometer sensor. A serious problem in designing the ROIC is how the value of the bolometer and reference resistors vary because of variations in manufacturing process. Since different pixel have different, resistance values, sensor operations must contend with fixed pattern noise (FPN) problems. In this paper, we propose a novel technique to compensate for the fluctuation in reference resistance by tiling into account the process variation. By using constant current source basing and correlated double sampling, we solved FPN.

  • PDF

Dual Sampling-Based CMOS Active Pixel Sensor with a Novel Correlated Double Sampling Circuit

  • Jo, Sung-Hyun;Bae, Myung-Han;Jung, Joon-Taek;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, we propose a 4-transistor active pixel sensor(APS) with a novel correlated double sampling(CDS) circuit for the purpose of extending dynamic range. Dual sampling techniques can overcome low-sensitivity and temporal disparity problems at low illumination. To accomplish this, two images are obtained at the same time using different sensitivities. The novel CDS circuit proposed in this paper contains MOS switches that make it possible for the capacitance of a conventional CDS circuit to function as a charge pump, so that the proposed APS exhibits an extended dynamic range as well as reduced noise. The designed circuit was fabricated by using $0.35{\mu}m$ 2-poly 4-metal standard CMOS technology and its characteristics have been evaluated.

A Low Power Dual CDS for a Column-Parallel CMOS Image Sensor

  • Cho, Kyuik;Kim, Daeyun;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.388-396
    • /
    • 2012
  • In this paper, a $320{\times}240$ pixel, 80 frame/s CMOS image sensor with a low power dual correlated double sampling (CDS) scheme is presented. A novel 8-bit hold-and-go counter in each column is proposed to obtain 10-bit resolution. Furthermore, dual CDS and a configurable counter scheme are also discussed to realize efficient power reduction. With these techniques, the digital counter consumes at least 43% and at most 61% less power compared with the column-counters type, and the frame rate is approximately 40% faster than the double memory type due to a partial pipeline structure without additional memories. The prototype sensor was fabricated in a Samsung $0.13{\mu}m$ 1P4M CMOS process and used a 4T APS with a pixel pitch of $2.25{\mu}m$. The measured column fixed pattern noise (FPN) is 0.10 LSB.

Design of a CMOS Image Sensor Based on a 10-bit Two-Step Single-Slope ADC

  • Hwang, Yeonseong;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.246-251
    • /
    • 2014
  • In this paper, a high-speed CMOS Image Sensor (CIS) based on a 10-bit two step Single Slope A/D Converter (SS-ADC) is proposed. The A/D converter is composed of both 5-bit coarse ADC and a 6-bit fine ADC, and the conversion speed is 10 times faster than that of the single-slope A/D convertor. In order to reduce the pixel noise, further, a Hybrid Correlated Double Sampling (H-CDS) is also discussed. The proposed A/D converter has been fabricated with 0.13um 1-poly 4-metal CIS process, and it has a QVGA ($320{\times}240$) resolution. The fabricated chip size is $5mm{\times}3mm$, and the power consumption is about 35 mW at 3.3 V supply voltage. The measured conversion speed is 10 us, and the frame rate is 220 frames/s.

Design of a CMOS Image Sensor Based on a 10-bit Two-Step Single-Slope ADC (10-bit Two-Step Single Slope A/D 변환기를 이용한 고속 CMOS Image Sensor의 설계)

  • Hwang, Inkyung;Kim, Daeyun;Song, Minkyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.64-69
    • /
    • 2013
  • In this paper, a high-speed CMOS Image Sensor (CIS) based on a 10-bit two-step single-slope A/D converter is proposed. The A/D converter is composed of both a 5-bit coarse ADC and a 6-bit fine ADC, and the conversion speed is 10 times faster than that of the single-slope A/D converter. In order to have a small noise characteristics, further, a Digital Correlated Double Sampling(D-CDS) is also discussed. The proposed A/D converter has been fabricated with 0.13um 1-poly 4-metal CIS process, and it has a QVGA($320{\times}240$) resolution. The fabricated chip size is $5mm{\times}3mm$, and the power consumption is about 35mW at 3.3V supply voltage. The measured conversion speed is 10us, and the frame rate is 220 frames/s.

Low Noise and Low Power IC Using Opamp Sharing Technique for Capacitive Micro-Sensor Sensing Platform (증폭기 공유 기법을 이용한 저전력 저잡음 용량형 센서용 신호 처리 IC)

  • Park, Yunjong;Kim, Choul-Young;Jung, Bang Chul;Yoo, Hoyoung;Ko, Hyoungho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • This paper describes the low noise and low power IC using the opamp sharing technique for the capacitive micro-sensor sensing platform. The proposed IC reduces noise using correlated double sampling (CDS) and reduces power consumption using the opamp sharing technique. The IC is designed to be fully programmable, and can be digitally controlled by serial peripheral interface (SPI). The power consumption and the integrated input referred noise are 1.02 mW from a 3.3 V supply voltage and $0.164aF_{RMS}$ with a bandwidth of 400 Hz. The capacitive sensitivity, the input-output linearity and the figure of merits (FoM) are 2.5 mV/fF, 2.46 %FSO, and 8.4, respectively.

A Digital Readout IC with Digital Offset Canceller for Capacitive Sensors

  • Lim, Dong-Hyuk;Lee, Sang-Yoon;Choi, Woo-Seok;Park, Jun-Eun;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.278-285
    • /
    • 2012
  • A digital readout IC for capacitive sensors is presented. Digital capacitance readout circuits suffer from static capacitance of sensors, especially single-ended sensors, and require large passive elements to cancel such DC offset signal. For this reason, to maximize a dynamic range with a small die area, the proposed circuit features digital filters having a coarse and fine compensation steps. Moreover, by employing switched-capacitor circuit for the front-end, correlated double sampling (CDS) technique can be adopted to minimize low-frequency device noise. The proposed circuit targeted 8-kHz signal bandwidth and oversampling ratio (OSR) of 64, thus a $3^{rd}$-order ${\Delta}{\Sigma}$ modulator operating at 1 MH was used for pulse-density-modulated (PDM) output. The proposed IC was designed in a 0.18-${\mu}m$ CMOS mixed-mode process, and occupied $0.86{\times}1.33mm^2$. The measurement results shows suppressed DC power under about -30 dBFS with minimized device flicker noise.

A Fully-Differential Correlated Doubling Sampling Readout Circuit for Mutual-capacitance Touch Screens

  • Kwon, Kihyun;Kim, Sung-Woo;Bien, Franklin;Kim, Jae Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.349-355
    • /
    • 2015
  • A fully-differential touch-screen sensing architecture is presented to improve noise immunity and also support most multi-touch events minimizing the number of amplifiers and their silicon area. A correlated double sampling function is incorporated to reduce DC offset and low-frequency noises, and a stabilizer circuit is also embedded to minimize inherent transient fluctuations. A prototype of the proposed readout circuit was fabricated in a $0.18{\mu}m$ CMOS process and its differential operation in response to various touch events was experimentally verified. With a 3.3 V supply, the current dissipation was 3.4 mA at normal operation and $140{\mu}A$ in standby mode.

A 1V Analog CMOS Front-End for Cardiac Pacemaker Applications (심장박동 조절장치를 위한 1V 아날로그 CMOS 전단 처리기)

  • Chae, Young-Cheol;Lee, Jeong-Whan;Lee, In-Hee;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • A low-voltage, low-power analog CMOS front-end for a cardiac pacemaker is proposed. The circuits include a 4th order switched-capacitor (SC) filter with a passband of 80-120 Hz and a SC variable gain amplifier whose control range is from 0 to 24-dB with 0.094 dB step. An inverter-based switched-capacitor circuit technique is used for low-voltage operation and ultra-low power consumption, and correlated double sampling technique is used for reducing the finite gain effect of an inverter. The proposed circuit has been designed in a $0.35-{\mu}m$ CMOS process, and it achieves 80-dB SFDR at 5-kHz sampling frequency. The power consumption is only 330 nW at 1-V power supply.

Design of a Vision Chip for Edge Detection with an Elimination Function of Output Offset due to MOSFET Mismatch (MOSFET의 부정합에 의한 출력옵셋 제거기능을 가진 윤곽검출용 시각칩의 설계)

  • Park, Jong-Ho;Kim, Jung-Hwan;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.255-262
    • /
    • 2002
  • Human retina is able to detect the edge of an object effectively. We designed a CMOS vision chip by modeling cells of the retina as hardwares involved in edge detection. There are several fluctuation factors which affect characteristics of MOSFETs during CMOS fabrication process and this effect appears as output offset of the vision chip which is composed of pixel arrays and readout circuits. The vision chip detecting edge information from input image is used for input stage of other systems. Therefore, the output offset of a vision chip determine the efficiency of the entire performance of a system. In order to eliminate the offset at the output stage, we designed a vision chip by using CDS(Correlated Double Sampling) technique. Using standard CMOS process, it is possible to integrate with other circuits. Having reliable output characteristics, this chip can be used at the input stage for many applications, like targe tracking system, fingerprint recognition system, human-friendly robot system and etc.