• Title/Summary/Keyword: coronal hole

Search Result 24, Processing Time 0.031 seconds

Development of Empirical Space Weather Models based on Solar Information

  • Moon, Yong-Jae;Kim, Rok-Soon;Park, Jin-Hye;Jin, Kang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • We are developing empirical space weather (geomagnetic storms, solar proton events, and solar flares) forecast models based on solar information. These models have been set up with the concept of probabilistic forecast using historical events. Major findings can be summarized as follows. First, we present a concept of storm probability map depending on CME parameters (speed and location). Second, we suggested a new geoeffective CME parameter, earthward direction parameter, directly observable from coronagraph observations, and demonstrated its importance in terms of the forecast of geomagnetic storms. Third, the importance of solar magnetic field orientation for storm occurrence was examined. Fourth, the relationship among coronal hole-CIR-storm relationship has been investigated, Fifth, the CIR forecast based on coronal hole information is possible but the storm forecast is challenging. Sixth, a new solar proton event (flux, strength, and rise time) forecast method depending on flare parameters (flare strength, duration, and longitude) as well as CME parameter (speed, angular width, and longitude) has been suggested. Seventh, we are examining the rates and probability of solar flares depending on sunspot McIntosh classification and its area change (as a proxy of flux change). Our results show that flux emergence greatly enhances the flare probability, about two times for flare productive sunspot regions.

  • PDF

Quantitative Evaluation of Energy Coupling between Quasi-Periodic Substorms and High-Speed Coronal Streams (준 주기적인 서브스톰과 고속 태양풍 사이의 에너지 결합에 대한 정량적 평가)

  • Park, M.Y.;Lee, D.Y.;Kim, K.C.;Choi, C.R.;Park, K.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • It has been known that high-speed solar wind streams associated with coronal holes lead to quasi-periodic substorms that occur approximately every $2{\sim}4$ hours. In this paper we examined 222 repetitive substorms that occurred during high-speed stream periods in July through December in 2003 to quantitatively determine a range of energy input from the solar wind into the magnetosphere between two consecutive substorms. For this study, we have used the Akasofu ${\varepsilon}$-parameter to time-integrate it for the interval between two consecutive substorms, and have applied this method to the 222 substorms. We find that the average amount of solar wind input energy between two adjacent substorms is $1.28{\times}10^{14}J$ and about 85% out of the 222 substorms occur after an energy input of $2{\times}10^{13}{\sim}2.3{\times}10^{14}J$. Based on these results, we suggest that it is not practical to predict when a sub storm will occur after a previous one occurs purely based on the solar wind-magnetosphere energy coupling. We provide discussion on several possible factors that may affect determining substorm onset times during high-speed streams.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.4
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).

Toward Next Generation Solar Coronagraph: Diagnostic Coronagraph Experiment

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jaeok;Bong, Suchan;Choi, Seonghwan;Kim, Jihun;Park, JongYup;Park, YoungDeuk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.42.2-42.2
    • /
    • 2019
  • Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed using four different filters around 400 nm. To demonstrate technology for the measurement through the 2017 total solar eclipse across the USA, KASI organized an expedition team to demonstrate the coronagraph measurement scheme and the instrumental technology. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, so-called Diagnostic Coronal Experiment (DICE), which is composed of two identical telescopes to improve a signal to noise ratio. The observation was conducted with 4 wavelengths and 3 linear polarization directions according to the planned schedule in a limited total eclipse time of about 140 seconds.Polarization information of corona from the data was successfully obtained but we failed to get the coronal electron temperature and speed information due to a low signal-to-noise ratio of the optical system. In this study, we report the development of DICE and observation results. TSE observation and analysis by using our own developed instrument gave an important lesson that a coronagraph should be carefully designed to archive the scientific purpose. This experience through TSE observation will be very useful for a success of NASA-KASI joint missions called the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and COronal Diagnostic EXperiment (CODEX).

  • PDF

Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006 (2006년 발생한 고속 태양풍과 관련된 정지궤도에서의 상대론적 전자 증가 이벤트)

  • Lee, Sung-Eun;Hwang, Jung-A;Lee, Jae-Jin;Cho, Kyung-Suk;Kim, Khan-Hyuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.439-450
    • /
    • 2009
  • Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs) were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1) High speed stream, (2) Pc5 ULF wave activity, (3) Southward IMF Bz, (4) substorm occurrence, (5) Whistler mode chorus wave, and (6) Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

SOLAR CYCLE VARIATION OF MICROWAVE POLAR BRIGHTENING AND EUV CORONAL HOLE OBSERVED BY NOBEYAMA RADIOHELIOGRAPH AND SDO/AIA

  • Kim, Sujin;Park, Jong-Yeop;Kim, Yeon-Han
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.125-129
    • /
    • 2017
  • We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) $193{\AA}$ and $171{\AA}$ on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of Gopalswamy et al. (1999) that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

2017 Total Solar Eclipse Expedition of KASI

  • Bong, Su-Chan;Choi, Seonghwan;Kim, Jihun;Park, Jongyeob;Jang, Bi-Ho;Park, Young-Deuk;Cho, Kyung-Suk;Cho, Kyuhyoun;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.67.2-67.2
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) plans to develop a coronagraph to measure the coronal electron density, temperature, and speed using four different filters around 400 nm, where strong Fraunhofer lines from the photosphere are scattered by coronal electrons. During the total solar eclipse occurring on August 21 across USA, KASI will organize an expedition team to demonstrate the coronagraph measurement scheme and the instrumental technology. The observation site is in Jackson Hole, Wyoming, USA. We plan to build two coronagraphs without occulter to improve signal to noise ratio. In addition, images of white light corona, wide field background, and all sky are planned to be taken with DSLR cameras. We will present the preliminary results of the expedition.

  • PDF

Emergency Trephination Site of Acute Subdural Hematoma (급성 경막하 혈종에서 응급 두개골 천공의 위치)

  • Moon, Soo-Hyeon;Kim, Geun-Hoe;Kwon, Taek-Hyun;Park, Youn-Kwan;Chung, Hung-Seob;Suh, Jung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.5
    • /
    • pp.659-663
    • /
    • 2000
  • The motality rate of acute subdural hematoma(ASDH) associated with closed head injury is high in spite of recent advances in neurosurgery. Many variables in regard to outcome of ASDH have been assessed. But among them, intracranial pressure(ICP) control and the time interval between injury and operative evacuation are the only things that can be affected by doctor. We introduced a simple method to the management of ASDH for reducing the time interval between injury and operation. When the immediate decompressive operation of ASDH was impossible by any causes, we made a burr hole at the center of hematoma, usually on 2-3cm above temporal squama and 1-2cm behind coronal suture under local anesthesia before main operation. Partial hematoma evacuation was achieved through the burr hole and it was effective in preventing further worsening of patients neurological status before main operation. Prompt hematoma evacuation through the burr hole seemed to be effective in delaying secondary ischemic brain damage and made easy to closing the dura opening and replacement of the bone flap at the end of main decompressive operation. This easy method may reduce the time interval between injury and operation. We represent surgical technique with two cases of ASDH managed with this simple method.

  • PDF

A Study on DeNOx Characteristics of Corona/Catalyst Hybrid System (코로나/촉매 일체형 시스템의 탈질특성에 관한 연구)

  • Chang, Hong-Ki;Choi, Chang-Sik;Shin, Jung-Uk;Ji, Young-Yeon;Hong, Min-Sun;Chung, Yoon-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.699-707
    • /
    • 2007
  • This study was carried out to investigate the reaction characteristics of corona/catalyst hybrid $DeNO_x$ process. The experiments were performed by using the multi-staged pin-to-hole type corona reactor which is enable to control the pin-to-hole gap and to insert the catalyst. Also, used for this study, were catalysts which commercially used Pt, Pd and $TiO_2$, and oxygen and hydrocarbon ($C_2H_4$) as reagents. In the syn-gas test, at high temperatures in the range of $100{\sim}200^{\circ}C$, the corona-only $DeNO_x$ process did not reduce the $NO_x$ concentration effectively. However in the presence of ethylene and oxygen as reagents, the $NO_x$ removal efficiency was better at these high temperatures than corona-only $DeNO_x$ process. In addition, coronal catalyst hybrid process with $TiO_2$ showed more efficiency of $NO_x$ removal than Pt and Pd catalyst, because the $TiO_2$ catalyst was more active than Pt and Pd catalyst to converse the $NO_2$ to $HNO_3$. Furthermore, at the condition of real diesel exhaust gas, the $DeNO_x$ efficiency of corona/catalyst hybrid process was not good at higher reaction temperature and plasma density.

EVIDENCE FOR THE SOLAR CYCLE IN THE SUNSPOT AND AURORA RECORDS OF GORYER DYNASTY (고려시대의 흑점과 오로라 기록에 보이는 태양활동주기)

  • YANG HONG JIN;PARK CHANGBOM;PARK MYUNG GOO
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.181-208
    • /
    • 1998
  • We have analyzed the sunspot and aurora data recorded in Go-Ryer-Sa. We have collected 35 records of sunspot observations for 46 days, and 232 records of auroral observations. To objectively estimate the periods of the solar activity appearing in these records a method of calculating the one-dimensional power spectrum from inhomogeneous data is developed, and applied to the sunspot and auroral data. We have found statistically significant 10.5 and 10 year periodicities in the distributions of sunspot and aurora records, respectively. These periods are consistent with the well-known solar activity cycle. There are indications of the long-term variations, but the period is not certain. We have also calculated the cross-correlations between the sunspot and auroral data. In particular, we have divided the aurora data into several subgroups to study their nature. We conclude that the historical records of strong auroral activity correspond to non-recurrent magnetic storms related to the sunspots. On the other hand, the records of weak auroral activity are thought to be related with the recurrent magnetic storms which occur frequently due to the coronal hole near the sunspot minimum.

  • PDF