• Title/Summary/Keyword: coronagraph

Search Result 53, Processing Time 0.032 seconds

Simulation and Experiment Study of the Cylindrical Occulter with Tapered Surface for the Solar Compact Coronagraph (소형 코로나그래프 개발을 위한 원통형 차폐기 성능 실험)

  • Yang, Heesu;Cho, Kyungsuk;Bong, Suchan;Choi, Sunghwan;Kim, Jihun;Baek, Jihye;Park, Jongyeob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.67.1-67.1
    • /
    • 2017
  • 태양의 코로나를 관측하기 위한 코로나그래프의 가장 중요한 부분은 태양 원반으로부터의 빛을 차단하기 위한 차폐기다. 태양 원반 밝기의 1e-6 - 1e-10에 이르는 어두운 외부 코로나(>2Rs)를 관측하기 위해서는 외부차폐기에서 발생하는 회절광을 최소화 하는 것이 중요하다. 우리는 수치실험과 실험실 실험을 통해 원통형 차폐기의 성능을 조사하였다. 수치실험 결과 2.5Rs영역을 가리는 원통형 차폐기의 경우 0.4um의 파장대역에 대해서 그 벽면 각도가 0.39도일 때 차폐기에 의한 회절광이 1e-10Is로 최소가 되었다. 우리는 중국 산동대학교 암터널 실험실에서 시뮬레이션과 일치하는 실험결과를 얻었는데 그 회절광량은 이상적인 경우보다는 조금 더 밝은 1e-9Is 수준이었다. 1e-9Is의 회절광량은 일정 간격으로 배치된9장을 겹쳐놓은 차폐기의 이론적인 성능과 비슷한 값으로 외부차폐기/내부차폐기/리오트 스탑/리오트 스팟 등으로 복잡하고 긴 구조의 코로나그래프가 아닌 외부차폐기만을 이용한 짧은 광학계의 소형 코로나그래프로 외부 코로나 관측이 가능함을 보여준다.

  • PDF

Estimation of Halo CME's radial speeds using coronal shock waves based on EUV observations

  • Jeong, Hyunjin;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.54.4-55
    • /
    • 2018
  • Propagating speeds of coronal mass ejections (CMEs) have been calculated by several geometrical models based on multi-view observations (STEREO/SECCHI and SOHO/LASCO). But in 2015, we were unable to obtain radial velocity of a CME because the STEREO satellites were located near the backside of the sun. As an alternative to resolve this problem, we propose a method to combine a coronal shock front, which appears on the outermost of the CME, and an EUV-wave that occurs on the solar disk. According to recent studies, EUV-wave occurs as a footprint of the coronal shockwave on the lower solar atmosphere. In this study, the shock, observed as a bubble shape, is assumed as a perfect sphere. This assumption makes it possible to determine the height of a coronal shock, by matching the position of an EUV-wave on the solar disk and a coronal shock front in coronagraph. The radial velocity of Halo-CME is calculated from the rate of coronal shock position shift. For an event happened on 2011 February 15, the calculated speed in this method is a little slower than the real velocity but faster than the apparent one. And these results and the efficiency of this approach are discussed.

  • PDF

Development of Empirical Space Weather Models based on Solar Information

  • Moon, Yong-Jae;Kim, Rok-Soon;Park, Jin-Hye;Jin, Kang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • We are developing empirical space weather (geomagnetic storms, solar proton events, and solar flares) forecast models based on solar information. These models have been set up with the concept of probabilistic forecast using historical events. Major findings can be summarized as follows. First, we present a concept of storm probability map depending on CME parameters (speed and location). Second, we suggested a new geoeffective CME parameter, earthward direction parameter, directly observable from coronagraph observations, and demonstrated its importance in terms of the forecast of geomagnetic storms. Third, the importance of solar magnetic field orientation for storm occurrence was examined. Fourth, the relationship among coronal hole-CIR-storm relationship has been investigated, Fifth, the CIR forecast based on coronal hole information is possible but the storm forecast is challenging. Sixth, a new solar proton event (flux, strength, and rise time) forecast method depending on flare parameters (flare strength, duration, and longitude) as well as CME parameter (speed, angular width, and longitude) has been suggested. Seventh, we are examining the rates and probability of solar flares depending on sunspot McIntosh classification and its area change (as a proxy of flux change). Our results show that flux emergence greatly enhances the flare probability, about two times for flare productive sunspot regions.

  • PDF

Comparison of Cone Model Parameters for Halo Coronal Mass Ejections

  • Na, Hyeon-Ock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observations, we consider two CME cone models: an ice-cream cone model and an asymmetric cone model. These models allow us to determine three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and cone axis. In this study, we compare these parameters obtained from both models using 50 well-observed HCMEs from 2001 to 2002. Then we obtain the root mean square error (RMS error) between measured projection speeds and estimated ones for the models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R=0.89), and the correlation coefficient of angular width is 0.68. The correlation coefficient of the angle between sky plane and cone axis is 0.42, which is much smaller than what is expected. The reason may be due to the fact that the source locations of the asymmetric cone model are assumed to be near the center. The average RMS error of the asymmetric cone model (86.2km/s) is slightly smaller than that of the ice-cream cone model (88.6km/s).

  • PDF

Testing Capability of CME Eccentricity Parameter

  • Rho, Su-Lyun;Cho, Kyung-Suk;Chang, Heon-Young;Moon, Yong-Jae;Kim, Rok-Soon;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.4-38
    • /
    • 2009
  • Rho et al.(2008) showed that the eccentricity parameter of a CME is an important indicator for forecasting CME geoeffectiveness. In this study we have tested a capability of the eccentricity parameter as an indicator of CME direction. For this work we considered 11 CMEs observed by both SOHO/LASCO and STEREO/SECCHI (2007-2008 from Temmer et al. 2009) coronagraphs. We have estimated earthward direction angles for these CMEs based on two different methods: (1) the eccentricity parameter from a single coronagraph SOHO/LASCO and (2) the triangulation technique using a pair of spacecrafts LASCO/STEREO-A and LASCO/STEREO-B. As a result, we have found that for 7 out of 11 CME events their direction angles are consistent with each other within $20^{\circ}$. This result demonstrates that the earthward direction based on the eccentricity parameter can be a good potential indicator for CME propagation direction.

  • PDF

Mass constraint and temperature estimation of eruptive plasma in X-ray

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Moon, Yong-Jae;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.60.2-60.2
    • /
    • 2013
  • We investigate several eruptive hot plasma observations by Hinode/XRT. Their corresponding EUV and/or white light CME features are visible in some events. Using those observations, we determine the mass constraints of eruptive plasma by assuming simplified geometrical structures of the plasma. In some events, their associated prominence eruptions and eruptive plasma were observed in EUV observations as absorption or emission features. The absorption feature provides the lower limit to the cold mass while the emission feature provides the upper limit to the mass of observed eruptive plasma in X-ray and EUV passbands. We compare the mass constraints for each temperature responses and find that the mass in EUV and XRT are smaller in their upper or lower limit than total mass in coronagraph. About half eruptive events in XRT have no corresponding CME, which may be due to failed eruptions or low plasma density. In addition, some events were observed by a few passbands in X-ray, which allows the determination of the eruptive plasma temperature using a filter ratio method. We present the isothermal plasma temperatures by the filter ratio method. These are possibly an average temperature for higher temperature plasma because the XRT is more sensitive in higher temperature.

  • PDF

Low ionization state plasma in CMEs

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2012
  • The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.

  • PDF

Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections

  • Kim, Roksoon;Gopalswamy, Nat;Moon, Yongjae;Cho, Kyungsuk;Yashiro, Seiji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.114.1-114.1
    • /
    • 2012
  • To measure the magnetic field strength in the solar corona, we examined 10 fast (>1000 km/s) limb coronal mass ejections (CMEs) that show clear shock structures in Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph images. By applying the piston-shock relationship to the observed CME's standoff distance and electron density compression ratio, we estimated the Mach number, Alfven speed, and magnetic field strength in the height range 3-15 solar radii (Rs). The main results from this study are as follows: (1) the standoff distance observed in the solar corona is consistent with those from a magnetohydrodynamic model and near-Earth observations; (2) the Mach number as a shock strength is in the range 1.49-3.43 from the standoff distance ratio, but when we use the density compression ratio, the Mach number is in the range 1.47-1.90, implying that the measured density compression ratio is likely to be underestimated owing to observational limits; (3) the Alfven speed ranges from 259 to 982 km/s and the magnetic field strength is in the range 6-105 mG when the standoff distance is used; (4) if we multiply the density compression ratio by a factor of two, the Alfven speeds and the magnetic field strengths are consistent in both methods; and (5) the magnetic field strengths derived from the shock parameters are similar to those of empirical models and previous estimates.

  • PDF

CME-CME Interaction near the Earth

  • Kim, Roksoon;Jang, Soojeong;Joshi, Bhuwan;Kwon, Ryunyoung;Lee, Jaeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2019
  • In coronagraph images, it is often observed that two successive CMEs merge into one another and form complex structures. This phenomenon, so called CME cannibalism caused by the differences in ejecting times and propagating velocities, can significantly degrade forecast capability of space weather, especially if it occur near the Earth. Regarding this, we attempt to analyze the cases that two CMEs are expecting to meet around 1 AU based on their arrival times. For this, we select 13 CME-CME pairs detected by ACE, Wind and/or STEREO-A/B. We find that 8 CME-CME pairs show a shock structure, which means they already met and became one structure. Meanwhile 5 pairs clearly show magnetic holes between two respective shock structures. Based on detailed investigation for each pair and statistical analysis for all events, we can get clues for following questions: 1) How does the solar wind structure change when they are merging? 2) Are there any systematic characteristics of merging process according to the CME properties? 3) Is the merging process associated with the occurrence of energetic storm particles? 4) What causes errors in calculating CME arrival times? Our results and discussions can be helpful to understand energetic phenomena not only close to the Sun but also near the Earth.

  • PDF

LABORATORY EXPERIMENTS OF OFF-AXIS MIRROR OPTICS OF ALUMINUM FOR SPACE INFRARED MISSIONS

  • Oseki, Shinji;Oyabu, Shinki;Ishihara, Daisuke;Enya, Keigo;Haze, Kanae;Kotani, Takayuki;Kaneda, Hidehiro;Nishiyama, Miho;Abe, Lyu;Yamamuro, Tomoyasu
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.359-361
    • /
    • 2017
  • We report our research on aluminum mirror optics for future infrared astronomical satellites. For space infrared missions, cooling the whole instrument is crucial to suppress the infrared background and detector noise. In this aspect, aluminum is appropriate for cryogenic optics, because the same material can be used for the whole structure of the instrument including optical components thanks to its excellent machinability, which helps to mitigate optical misalignment at low temperatures. We have fabricated aluminum mirrors with ultra-precision machining and measured the wave front errors (WFEs) of the mirrors with a Fizeau interferometer. Based on the power spectral densities of the WFEs, we confirmed that the surface accuracy of all the mirrors satisfied the requirements for the SPICA Coronagraph Instrument. We then integrated the mirrors into an optical system, and examined the image quality of the system with an optical laser. As a result, the total WFE is estimated to be 33 nm (rms) from the Strehl ratio. This is consistent with the WFEs estimated from the measurement of the individual mirrors.