• Title/Summary/Keyword: coronagraph

Search Result 53, Processing Time 0.027 seconds

LEGACY OF THE SPICA CORONAGRAPH INSTRUMENT (SCI): TOWARD EXOPLANETARY SCIENCE WITH SPACE INFRARED TELESCOPES IN THE FUTURE

  • Enya, Keigo
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.347-349
    • /
    • 2017
  • This paper reviews the legacy of the SPCIA Coronagraph Instrument (SCI) of which the primary scientific objective is the characterization of Jovian exoplanets by coronagraphic spectroscopy in the infrared. Studies on binary shaped pupil mask coronagraphs are described. Cryogenic active optics is discussed as another key technology. Then approaches to observing habitable zones in exoplanetary systems with a passively-cooled space infrared telescope are discussed. The SCI was dropped in a drastic change of the SPICA mission. However, its legacy is useful for space-borne infrared telescopes dedicated for use in exoplanetary science in the future, especially for studies of biomarkers.

Development of a diagnostic coronagraph on the ISS: CODEX progress report

  • Kim, Yeon-Han;Choi, Seonghwan;Bong, Su-Chan;Cho, Kyungsuk;Newmark, Jeffrey;Gopalswamy, Nat.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.79.3-79.3
    • /
    • 2021
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a diagnostic coronagraph to be deployed in 2023 on the International Space Station (ISS) in collaboration with the NASA Goddard Space Flight Center (GSFC). The mission is known as "Coronal Diagnostic Experiment (CODEX)", which is designed to obtain simultaneous measurements of the electron density, temperature, and velocity using multiple filters in the 2.5-10 Rs range. The coronagraph will be installed and operated on the ISS to understand the physical conditions in the solar wind acceleration region, and to enable and validate the next generation space weather models. In this presentation, we will introduce recent progress and future plan.

  • PDF

An Operating Software Development of A Prototype Coronagraph for The Total Solar Eclipse in 2017

  • Park, Jongyeob;Choi, Seonghwan;Kim, Jihun;Jang, Be-ho;Bong, Su-Chan;Baek, Ji-Hye;Yang, Heesu;Park, Young-Deuk;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2017
  • We develop a coronagraph to measure the coronal electron density, temperature, and speed by observing the linearly polarized brightness of solar corona with 4 different wavelengths. Through the total solar eclipse on 21 August 2017, we test an operating software of a prototype coronagraph working with two sub-systems of two motorized filter wheels and a CCD camera that are controlled by a portable embedded computer. A Core Flight System (CFS) is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. We use the CFS software framework to develop the operating software that can control the two sub-systems asynchronously in an observation scenario and communicate with a remote computer about commands, housekeeping data through Ethernet. The software works successfully and obtains about 160 images of 12 filter sets (4 bandpass filters and 3 polarization angles) during the total phase of the total solar eclipse. For the future, we can improve the software reliability by testing the software with a sufficient number of test cases using a testing framework COSMOS. The software will be integrated into the coronagraph for balloon-borne experiments in 2019.

  • PDF

Improvement of Corona Temperature and Velocity Determination Method Using a Coronagraph Filter System

  • Cho, Kyuhyoun;Chae, Jongchul;Lim, Eun-Kyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.3-86
    • /
    • 2017
  • We have developed a methodology to determine the coronal electron temperature and solar wind speed using a four filter coronagraph system. The method developed so far have been applied to total eclipse observation and have yielded plausible results. The current methodology starts from the assumption that 1) coronal free electrons are isothermal and 2) coronal free electrons have spherically symmetric distrubution. However, the actual solar corona differs significantly from the two assumptions above. The coronal electron density is not spherically symmetric due to streamers, plumes, and coronal loops, and the electron temperature is also expected to increase rapidly with distance from the sun. We will discuss how to determine the temperature and wind speed of the corona in the case of corona with thermal structures and non-spherical symmetric electron density.

  • PDF

Lunar Sodium Observations at the Kyung-Hee Observatory

  • Lee, Dong-Wook;Chun, Kyung-Won;Kim, Sang-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • Lunar sodium observations are being prepared by a group of WCU scientists at the Kyung-Hee Observatory. We have been working on 3-D Monte Carlo simulations of the lunar sodium exosphere since 2009, and we need to obtain additional sodium images in order to constrain our models. Using a newly-designed simple coronagraph which is optimized for lunar observations, we plan to make direct sodium image observations. We present the structure of the planned coronagraph, optical-image observation plans, and spectroscopic observation plans of the lunar tail. We will also present updated results from the 3-D Monte Carlo simulations.

  • PDF

A Preliminary Study for the Development of a Space Coronagraph

  • Cho, Kyungsuk;Bong, Suchan;Lim, Eunkyung;Park, Sunghong;Park, Youngdeuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2014
  • 코로나그래프는 우주환경의 변화의 주요원인인 코로나물질방출을 관측할 수 있는 핵심우주관측기이다. 지난 약 18여년간 운용되어 왔던 SOHO 위성의 LASCO (Large Angle and Spectrometric Coronagraph) 탑재체의 노후화로 인한 운용 종료를 앞두고 있어 새로운 코로나그래프의 개발이 시급하다. 본 연구에서는 우주환경예보의 활용과 태양코로나와 코로나물질 방출에 관한 새로운 과학적 발견을 위해 적합한 위성용 코로나그래프의 개발방향을 제안하고 국제우주정거장이나 우리나라 위성을 활용하여 개발하는 경우에 극복해야 할 현실적인 기술 한계와 극복 방안에 대해 토의한다.

  • PDF

BITSE Instrument

  • Choi, Seonghwan;Park, Jongyeob;Yang, Heesu;Baek, Ji-Hye;Kim, Jihun;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Newmark, Jeffrey S.;Gong, Qian;Nguyen, Hanson;Chang, William S.;Swinski, Joseph-Paul A.;Gopalswamy, Natchumuthuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • BITSE is a balloon mission, which is a solar coronagraph to measure speed and temperature of the solar wind using 4 different wavelength filters and an pixelated polarization camera. KASI and NASA jointly designed, developed, and tested the solar coronagraph. Mainly KASI developed an imaging system and a control system, and NASA developed an optical system and mechanical structures. We mount the BITSE on Wallops Arc-Second Pointer (WASP) of Wallops Flight Facility, and launch it with a 39 mcf balloon of Columbia Scientific Ballon Facility. We will introduce the overall system of the BITSE.

  • PDF

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIFFRACTED LIGHT SIMULATION AND TEST RESULTS FOR A CONE OCCULTER WITH TAPERED SURFACE

  • Yang, Heesu;Bong, Su-Chan;Cho, Kyung-Suk;Choi, Seonghwan;Park, Jongyeob;Kim, Jihun;Baek, Ji-Hye;Nah, Jakyoung;Sun, Mingzhe;Gong, Qian
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.27-36
    • /
    • 2018
  • In a solar coronagraph, the most important component is an occulter to block the direct light from the disk of the sun. Because the intensity of the solar outer corona is $10^{-6}$ to $10^{-10}$ times of that of the solar disk ($I_{\odot}$), it is necessary to minimize scattering at the optical elements and diffraction at the occulter. Using a Fourier optic simulation and a stray light test, we investigated the performance of a compact coronagraph that uses an external truncated-cone occulter without an internal occulter and Lyot stop. In the simulation, the diffracted light was minimized to the order of $7.6{\times}10^{-10}I_{\odot}$ when the cone angle ${\theta}_c$ was about $0.39^{\circ}$. The performance of the cone occulter was then tested by experiment. The level of the diffracted light reached the order of $6{\times}10^{-9}I_{\odot}$ at ${\theta}_c=0.40^{\circ}$. This is sufficient to observe the outer corona without additional optical elements such as a Lyot stop or inner occulter. We also found the manufacturing tolerance of the cone angle to be $0.05^{\circ}$, the lateral alignment tolerance was $45{\mu}m$, and the angular alignment tolerance was $0.043^{\circ}$. Our results suggest that the physical size of coronagraphs can be shortened significantly by using a cone occulter.

Development of the Camera System for Total Solar Eclipse

  • Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Bong, Su-Chan;Jang, Bi-Ho;Park, Sung-Joon;Yang, Heesu;Park, Young-Deuk;Cho, Kyungsuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.84.3-85
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) has been developing the Camera System for the Total Solar Eclipse (TSE) observation. In 2016 we have assembled a simple camera system consisting of a commercial camera lens, a polarizer, bandpass filters, and a Canon camera to observe the solar corona during the Total Solar Eclipse in Indonesia. For 2017 TSE observation, we have studied and adapted the compact coronagraph design proposed by NASA. The compact coronagraph design dramatically reduces the volume and weight, and used for TSE observation. The camera is used to test and verify key components including function of bandpass filter, polarizer, and CCD during observing the Total Solar Eclipse. In this poster we focus on optical engineering works including designing, analyzing, testing, and building for the TSE observation.

  • PDF