• Title/Summary/Keyword: corona discharger

Search Result 11, Processing Time 0.023 seconds

The Experimental Study on Removal of Sulfur Dioxide and Nitrogen Oxide Using a Nano-Pulse Corona Discharger at Different Temperatures (나노펄스 코로나 방전의 온도 변화에 따른 이산화황 및 일산화질소 제거에 관한 실험적 연구)

  • Han, Bang-Woo;Kim, Hak-Joon;Kim, Yong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.387-394
    • /
    • 2011
  • A study on the removal of sulfur dioxide and nitrogen oxide was carried out using a non-thermal nano-pulse corona discharger at different gas temperatures. Pulse voltage with a high voltage of 50 kV, a pulse rising time of about 100 ns, a full width at half maximum of about 500 ns and a frequency of 1 kHz was applied to a wire-cylinder corona reactor. Ammonia and propylene gases were added into the corona reactor as additives with a static mixer. Ammonia addition had less effect on $SO_2$ reduction at the higher temperature because of the retardation of ammonium sulfate formation. However, propylene addition enhanced NO reduction at higher temperature due to increased gas mixture. $SO_2$ was further removed at the mixed $SO_2$ and NO gas due to increased $NO_2$ by the conversion of NO. The addition of ammonia and propylene gases was more highly dominant for the removal of sulfur dioxide compared to the sole pulse corona without the additives. However, the specific energy density per unit concentration of pulse corona as well as propylene additive was an important factor to remove NO gas. Therefore, the specific energy density per unit concentration of 0.04 Wh/($m^3{\cdot}ppm$) was necessary for the NO removal of more than 80% with the concentration ratio of 2.0 for propylene and NO. Hydrogen peroxide was another alternative additive to remove both $SO_2$ and NO in the nano-pulse corona discharger.

Effects of Ion Nuclei in the Metallic Nanoparticle Generation Using a Supersonic Nozzle (초음속 노즐을 이용한 금속 나노 입자의 생성에서 이온 핵의 영향)

  • Jung, Jae-Hee;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1329-1334
    • /
    • 2005
  • Synthesis of silver nanoparticles by the supersonic nozzle expansion method with corona discharge ions was investigated. Corona discharge ions functioned as seeds for heterogeneous nucleation in the silver nanoparticles formation process and provided silver nanoparticles with electronic repulsive force that prevents aggregation of the particles. For ion ejecting, we used sonic-jet corona discharger. Upon application of the corona discharge ions, the mean diameter of the produced particles was decreased from 12.54 to 6.22nm and the standard deviation was decreased from 5.02 to 3.34nm. In addition, the agglomeration of silver nanoparticles was reduced.

A Study on the Characteristic of Ozone and $NO_x$ Generation in the Electerostatic Precipitators (정전식 집진기에서 오존, $NO_x$ 발생특성에 관한 연구)

  • Noh, Kwang-Chul;Lee, Young-Ho;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1423-1428
    • /
    • 2003
  • We investigated the amount of the toxic gases emitted from the Electrostatic Precipitators(ESPs), which were currently used by indoor air cleaners. We used the wire-to-plate(WTP) type and the needle-to-plate(NTP) type corona discharger in our study. Using the voltage, the polarity of wire, the number of needles of NTP as the input variables, we studied the characteristic of Ozone and $NO_x$ generation in the ESPs. As the results, we found out that the concentration of Ozone, $NO_2$ and $NO_x$ is increased, but the amount of NO is decreased with increasing the voltage and the number of needles. And we knew that the generation rate of ozone and $NO_x$ is very related with the corona region.

  • PDF

A Research on the Static Discharger Installation Design and Test for Air Vehicle (항공기 외표면 정전기 방출기 장착설계 및 시험에 관한 연구)

  • Woo, Hee-Chae;Kim, Yong-Tae;Kim, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.574-580
    • /
    • 2017
  • Static dischargers should be installed on air vehicle to emit a static electricity during flight. Especially, If static electricity is not removed by static discharger on the air vehicle, it makes ionization and corona effect on the edge of antenna and wing. Those phenomenon bring about performance degradation for radio communication and equipment operation. In this paper, the conditions such as climate, air vehicle's speed and frontal area were analyzed to design static dischargers. As a result, the static dischargers would be optimally designed for air vehicles and the performance of the static dischargers can verify according to the functional experiment. Therefore the result of this research will be used to make static discharger installation design for new air vehicle that have different size and mission.

NUMERICAL INVESTIGATION ON CAPTURE OF NANOPARTICLES IN ELECTROSTATIC PRECIPITATOR WITHOUT CORONA DISCHARGER (코로나 방전기가 없는 전기집진기의 나노입자 집진에 관한 수치해석)

  • Lee, J.W.;Jang, J.S.;Lee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.103-108
    • /
    • 2010
  • This article presents computational fluid dynamics (CFD) simulations of nanoparticle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program(CFD-ACE) including electrostatic theory and Lagrangian-based equation for nanoparticle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in nanoparticle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.

  • PDF

Numerical Investigation on Capture of Sub-Micron particles in Electrostatic Precipitator without Corona Discharger (코로나 방전기가 없는 전기집진기의 미세입자 집진에 관한 수치해석)

  • Lee, Jin-Woon;Jang, Jae-Sung;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2011
  • This article presents computational fluid dynamics (CFD) simulations of sub-micron particle movements and flow characteristics in laboratory-scale electrostatic precipitator (ESP) without corona discharge, and for simulation, it uses the commercial CFD program (CFD-ACE) including electrostatic theory and Lagrangian-based equation for sub-micron particle movement. For validation of CFD results, a simple cylindrical type of ESP is simulated and numerical prediction shows fairly good agreement with the analytical solution. In particular, the present study investigates the effect of particle diameter, inlet flow rate, and applied electric potential on particle collection efficiency and compares the numerical prediction with the experimental data, showing good agreement. It is found that the particle collection efficiency decreases with increasing inlet flow rate because the particle detention time becomes shorter, whereas it decreases with the increase in sub-micron particle diameter and with the decrease of applied electric voltage resulting from smaller terminal electrostatic velocity.