• Title/Summary/Keyword: cornering stability

Search Result 43, Processing Time 0.015 seconds

A Study on Integrated Control System Design of Active Rear Wheel Steering and Yaw-Moment Control Systems (능동 후륜조타와 요우 모멘트의 협조제어에 관한 연구)

  • Park, J.H.;Pak, J.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • Conventionally, 2WS is used for vehicle steering, which can only steering front wheel. In case of trying to high speed lane change or cornering through this kind of vehicle equipped 2WS, it may occur much of Yaw moment. On the other hand, 4WS makes decreasing of Yawing Moment, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

  • PDF

Dynamic Analysis of Monorail System with Magnetic Caterpillar (자석식 무한궤도를 가진 모노레일의 동역학 해석)

  • Won, Jong-Sung;Tak, Tae-Oh
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.

A Study on the Application of the Steering Control to Increase Roll Stiffness for the Relatively Tall Vehicles (무게중심이 높은 차량의 롤 강성계수 증대를 위한 스티어링 제어기법의 응용에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • For the high center of gravity vehicles the roll stiffness of their suspensions is arranged to be very high because such vehicles are in some danger of tipping over in cornering. In some cases, the effective roll stiffness is determined significantly by the compliance of the tires because of the very stiff anti-roll members incorporated in the suspension. In such cases, it is clear that the shock absorbers which may be effective in damping heave oscillations have little effect on roll oscillations. Therefore, wind gusts and roadway unevenness may cause large swaying oscillations. In this paper, to improve the stability for the high center of gravity vehicles a control scheme to augment the damping of the roll mode is proposed. As the feedback signals needed to provide damping of the roll motion, the front or rear steer angles or both are chosen because they are very related to roll motion. The scheme is effective from moderate to high speeds and stabilizes the roll mode without introducing disturbance moments from roadway unevenness as shock absorbers do. The validity on the proposed method is verified through the computer simulation.

  • PDF