• Title/Summary/Keyword: core-shell particle

Search Result 120, Processing Time 0.022 seconds

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

Characterization of the ZnSe/ZnS Core Shell Quantum Dots Synthesized at Various Temperature Conditions and the Water Soluble ZnSe/ZnS Quantum Dot

  • Hwang, Cheong-Soo;Cho, Ill-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1776-1782
    • /
    • 2005
  • ZnSe/ZnS, UV-blue luminescent core shell quantum dots, were synthesized via a thermal decomposition reaction of organometallic zinc and solvent coordinated Selenium (TOPSe) in a hot solvent mixture. The synthetic conditions of the core (ZnSe) and the shell (ZnS) were independently studied at various reaction temperature conditions. The obtained colloidal nanocrystals at corresponding temperatures were characterized for their optical properties by UV-vis, room temperature solution photoluminescence (PL) spectroscopy, and further obtained powders were characterized by XRD, TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the ZnSe core was 300 ${^{\circ}C}$, and for the optimum shell capping, the temperature was 135 ${^{\circ}C}$. At this temperature, solution PL spectrum showed a narrow emission peak at 427 nm with a PL efficiency of 15%. In addition, the measured particle sizes for the ZnSe/ZnS nanocomposite via TEM were in the range of 5 to 12 nm. Furthermore, we have synthesized water-soluble ZnSe/ZnS nanoparticles by capping the ZnSe/ZnS hydrophobic surface with mercaptoacetate (MAA) molecules. For the obtained aqueous colloidal solution, the UV-vis spectrum showed an absorption peak at 250 nm, and the solution PL emission spectrum showed a peak at 425 nm, which is similar to that for hydrophobic quantum dot ZnSe/ZnS. However, the calculated PL efficiency was relatively low (0.1%) due to the luminescence quenching by water and MAA molecules. The capping ligand was also characterized by FT-IR spectroscopy, with the carbonyl stretching peak in the mercaptoacetate molecule appearing at 1575 $cm ^{-1}$. Finally, the particle sizes of the MAA capped ZnSe/ZnS were measured by TEM, showing a range of 12 to 17 nm.

Preparation of Core-Shell Structured Iron Oxide/Graphene Composites for Supercapacitors Application (코어-쉘 구조의 산화철/그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.65-72
    • /
    • 2018
  • Core-shell structured $Fe_3O_4/graphene$ composites were synthesized by aerosol spray drying process from a colloidal mixture of graphene oxides and $Fe_3O_4$ nanoparticles. The structural and electrochemical performance of $Fe_3O_4/graphene$ were characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, cyclic voltammetry, and galvanometric discharge-charge method. Core-shell structured $Fe_3O_4/GR$ composites were synthesized in different mass ratios of $Fe_3O_4$ and graphene oxide. The composite particles were around $3{\mu}m$ in size. $Fe_3O_4$ nanoparticles were encapsulated with a graphene. Morphology of the $Fe_3O_4/graphene$ composite particles changed from a spherical ball having a relatively smooth surface to a porous crumpled paper ball as the content of GO increased in the composites. The $Fe_3O_4/GR$ composite fabricated at the weight ratio of 1:4 ($Fe_3O_4:GO$) exhibited higher specific capacitance($203F\;g^{-1}$) and electrical conductivity than as-fabricated $Fe_3O_4/GR$ composite.

Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process (One-pot 공정을 이용한 InP/ZnS core/shell 나노결정 합성 및 특성 연구)

  • Joo, So Yeong;Hong, Myung Hwan;Kang, Leeseung;Kim, Tae Hyung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • In this study, simple chemical synthesis of green emitting Cd-free InP/ZnS QDs is accomplished by reacting In, P, Zn, and S precursors by one-pot process. The particle size and the optical properties were tailored, by controlling various experimental conditions, including [In]/[MA] (MA: myristic acid) mole ratio, reaction temperature and reaction time. The results of ultraviolet-visible spectroscopy (UV-vis), and of photoluminescence (PL), reveal that the exciton emission of InP was improved by surface coating, with a layer of ZnS. We report the correlation between each experimental condition and the luminescent properties of InP/ZnS core/shell QDs. Transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques were used to characterize the as-synthesized QDs. In contrast to core nanoparticles, InP/ZnS core/shell treated with surface coating shows a clear ultraviolet peak. Besides this work, we need to study what clearly determines the shell kinetic growth mechanism of InP/ZnS core shell QDs.

Clonazepam Release from Core-shell Type Nanoparticles In Vitro

  • Kim, Hyun-Jung;Jeong, Young-Il;Kim, Sung-Ho;Lee, Young-Moo;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.324-329
    • /
    • 1997
  • AB-type amphiphilic copolymers (abbreviated as LE) composed of poly (L-leucine) (PLL) as the A component and poly (ethylene oxide) (PEO) as the B component were synthesized by the ring-opening polymerization of L-leucine N-carboxy-anhydride initiated by methoxy polyoxyethylene amine $(Me-PEO-NH_2)$ and characterized. Core-shell type nanoparticles were prepared by the diafiltration method. Particle size distribution obtained by dynamic light scattering was dependent on PLL composition and the size for LE-1, LE-2 and LE-3 was $369.6{\pm}267$, $523.4{\pm}410$ and $561.2{\pm}364 nm$, respectively. Shapes of the nanoparticies observed by transmission electron microscope (TEM) were almostly spherical. The critical micelle concentration (CMC) of the nanoparticles determined by a fluorescence probe technique was dependent on the composition of hydrophobic PLL, and the CMC for LE-1, LE-2 and LE-3 was $2.0{\times}10^{-6},1.7{\times}10^{-6}$ and $1.5{\times}10^{-6}(mol/l) $, respectively. Clonazepam release from core-shell type nanoparticles in vitro was dependent on PLL composition and drug loading content.

  • PDF

Fabrication of Nano Porous Silicon Particle with SiO2 Core Shell for Lithium Battery Anode (리튬 배터리 음극용 SiO2 코어 쉘을 갖춘 나노 다공성 실리콘 입자 제조)

  • Borim Shim;Eunha Kim;Hyeonmin Yim;Won Jin Kim;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.370-376
    • /
    • 2024
  • In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il;Choi, Ki-Choon;Song, Chae-Eun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.712-719
    • /
    • 2006
  • In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik;Kershner, Ryan J.;Braun, Paul V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.129-132
    • /
    • 2009
  • Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.

The Fabrication of PVA Polymer Coated on the Surface of B4C Nanocomposite by High Energy Ball Mill (고에너지볼밀을 이용한 PVA 고분자가 표면 코팅된 B4C 나노복합재 제조)

  • Uhm, Young-Rang;Kim, Jae-Woo;Jung, Jin-Woo;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.110-114
    • /
    • 2009
  • Mechanical coating process was applied to form 89 %-hydrolyzed poly vinyl alcohol (PVA) onto boron carbide ($B_4C$) nanopowder using one step high energy ball mill method. The polymer layer coated on the surface of B4C was changed to glass-like phase. The average particle size of core/shell structured $B_4C$/PVA was about 50 nm. The core/shell structured $B_4C$/PVA was formed by dry milling. However, the hydrolyzed PVA of $98{\sim}99%$ with high glass transition temperature ($T_g$) was rarely coated on the powder. The $T_g$ of polymer materials was one of keys for guest polymer coating on to the host powder by solvent free milling.